FMO2 Promotes Angiogenesis via Regulation of N-Acetylornithine.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingyi Wang, Yinghui Xu, Xianpeng Wu, Mo Li, Changchen Xiao, Zaiyang Fu, Yongjian Chen, Qingju Li, Yating Ruan, Jing Zhao, Zhiwei Zhong, Jinghai Chen, Wei Zhu, Jinliang Nan, Cheng Ni, Xinyang Hu
{"title":"FMO2 Promotes Angiogenesis via Regulation of N-Acetylornithine.","authors":"Jingyi Wang, Yinghui Xu, Xianpeng Wu, Mo Li, Changchen Xiao, Zaiyang Fu, Yongjian Chen, Qingju Li, Yating Ruan, Jing Zhao, Zhiwei Zhong, Jinghai Chen, Wei Zhu, Jinliang Nan, Cheng Ni, Xinyang Hu","doi":"10.1002/advs.202506618","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cell (EC) metabolism is an emerging target for proangiogenic treatment of ischemic diseases; however, little is known about the metabolic alterations in ECs during ischemic diseases or vessel development stages. By conducting single-cell transcriptome analysis, this work identifies flavin-containing monooxygenase 2 (FMO2) as a pivotal regulator under multiple ischemic conditions. Targeted EC compensation of FMO2 in the genetic ablation model proved its proangiogenic function in various ischemic models and in the developing retina. Metabolomics combined with EC single-cell sequencing revealed N-acetylornithine as the top-ranked altered metabolite regulated by FMO2, which inactivates NOTCH1 expression through the transcriptome regulation of activating transcription factor 3 (ATF3). N-acetylornithine delivery displays a proangiogenic therapeutic effect in the ischemic models. The therapeutic effects of FMO2 and N-acetylornithine can also be recapitulated in human ECs. These findings provide insights into the proangiogenic mechanisms underlying FMO2 and N-acetylornithine, revealing potential targets to treat ischemic disease.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06618"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506618","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Endothelial cell (EC) metabolism is an emerging target for proangiogenic treatment of ischemic diseases; however, little is known about the metabolic alterations in ECs during ischemic diseases or vessel development stages. By conducting single-cell transcriptome analysis, this work identifies flavin-containing monooxygenase 2 (FMO2) as a pivotal regulator under multiple ischemic conditions. Targeted EC compensation of FMO2 in the genetic ablation model proved its proangiogenic function in various ischemic models and in the developing retina. Metabolomics combined with EC single-cell sequencing revealed N-acetylornithine as the top-ranked altered metabolite regulated by FMO2, which inactivates NOTCH1 expression through the transcriptome regulation of activating transcription factor 3 (ATF3). N-acetylornithine delivery displays a proangiogenic therapeutic effect in the ischemic models. The therapeutic effects of FMO2 and N-acetylornithine can also be recapitulated in human ECs. These findings provide insights into the proangiogenic mechanisms underlying FMO2 and N-acetylornithine, revealing potential targets to treat ischemic disease.

FMO2通过调节n -乙酰鸟氨酸促进血管生成。
内皮细胞(EC)代谢是缺血性疾病促血管生成治疗的新靶点;然而,在缺血性疾病或血管发育阶段,对ECs的代谢改变知之甚少。通过单细胞转录组分析,本研究确定了含黄素单加氧酶2 (FMO2)在多种缺血条件下的关键调节作用。基因消融模型中FMO2的靶向EC代偿证实了其在各种缺血模型和发育中的视网膜中的促血管生成功能。代谢组学结合EC单细胞测序结果显示,n -乙酰鸟氨酸是FMO2调控的最高改变代谢物,FMO2通过转录组调控激活转录因子3 (ATF3)使NOTCH1表达失活。n -乙酰鸟氨酸在缺血模型中显示出促进血管生成的治疗作用。FMO2和n -乙酰鸟氨酸的治疗效果也可以在人ECs中得到概括。这些发现揭示了FMO2和n -乙酰鸟氨酸的促血管生成机制,揭示了治疗缺血性疾病的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信