AI-Enhanced Design of Hexagonal Shell and Finned Tube Latent Heat Storage System Using Nonuniform Longitudinal Fins and Nanomaterials During Melting

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-06-05 DOI:10.1002/htj.23408
Pouyan Talebizadehsardari, Nashmi H. Alrasheedi, Hayder I. Mohammed, Khalil Hajlaoui, Nashwan Adnan Othman, Mohammad Edalatifar, Jana Shafi, Faisal Alresheedi
{"title":"AI-Enhanced Design of Hexagonal Shell and Finned Tube Latent Heat Storage System Using Nonuniform Longitudinal Fins and Nanomaterials During Melting","authors":"Pouyan Talebizadehsardari,&nbsp;Nashmi H. Alrasheedi,&nbsp;Hayder I. Mohammed,&nbsp;Khalil Hajlaoui,&nbsp;Nashwan Adnan Othman,&nbsp;Mohammad Edalatifar,&nbsp;Jana Shafi,&nbsp;Faisal Alresheedi","doi":"10.1002/htj.23408","DOIUrl":null,"url":null,"abstract":"<p>Thermal energy storage systems incorporating phase-change materials (PCMs) have difficulties associated with limited thermal conductivity, resulting in ineffective heat storage and retrieval. This study aims to enhance the efficiency of double-tube latent heat storage systems by utilizing a hexagonal shell augmented with irregular fins and nanomaterials. This study's innovation is optimizing the fin configuration and integrating nano-reinforced PCMs to enhance heat transmission during melting and solidification. The study initially examines the system's performance without reinforcement, demonstrating that traditional double-tube systems have superior storage rates. The impact of incorporating fins with an uneven angular distribution is examined, revealing that the 30°−35°−40°−45° design decreases the discharge time by 7.3% and enhances the energy storage rate by 6.0% relative to the normal 40° fins configuration. The outcomes state that the incorporation of 6% Al₂O₃ nanoparticles drops the charging time by 3.5% and enhances the heat storage rate by 22.5% relative to the 4% scenario. This study is significant as it introduces an innovative hexagonal shell design combined with nonuniform fins and nanomaterials to enhance the thermal performance of latent heat storage systems, addressing the critical challenge of low thermal conductivity in PCMs. The findings provide valuable insights for optimizing energy storage efficiency, which is essential for advancing renewable energy systems and sustainable thermal management solutions.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 7","pages":"4279-4298"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal energy storage systems incorporating phase-change materials (PCMs) have difficulties associated with limited thermal conductivity, resulting in ineffective heat storage and retrieval. This study aims to enhance the efficiency of double-tube latent heat storage systems by utilizing a hexagonal shell augmented with irregular fins and nanomaterials. This study's innovation is optimizing the fin configuration and integrating nano-reinforced PCMs to enhance heat transmission during melting and solidification. The study initially examines the system's performance without reinforcement, demonstrating that traditional double-tube systems have superior storage rates. The impact of incorporating fins with an uneven angular distribution is examined, revealing that the 30°−35°−40°−45° design decreases the discharge time by 7.3% and enhances the energy storage rate by 6.0% relative to the normal 40° fins configuration. The outcomes state that the incorporation of 6% Al₂O₃ nanoparticles drops the charging time by 3.5% and enhances the heat storage rate by 22.5% relative to the 4% scenario. This study is significant as it introduces an innovative hexagonal shell design combined with nonuniform fins and nanomaterials to enhance the thermal performance of latent heat storage systems, addressing the critical challenge of low thermal conductivity in PCMs. The findings provide valuable insights for optimizing energy storage efficiency, which is essential for advancing renewable energy systems and sustainable thermal management solutions.

Abstract Image

基于非均匀纵翅片和纳米材料的六方壳翅片管潜热系统的ai强化设计
结合相变材料(PCMs)的热能储存系统存在导热性有限的困难,导致热量储存和回收效率低下。本研究的目的是提高双管潜热储存系统的效率,利用六角形外壳增加不规则鳍和纳米材料。本研究的创新之处在于优化翅片结构和集成纳米增强pcm,以增强熔化和凝固过程中的传热。该研究首先测试了系统在没有加固的情况下的性能,证明了传统的双管系统具有更高的存储速率。研究结果表明,与普通的40°鳍片结构相比,30°- 35°- 40°- 45°鳍片设计可减少7.3%的放电时间,提高6.0%的储能率。结果表明,与4%的情况相比,6%的Al₂O₃纳米颗粒的掺入使充电时间缩短了3.5%,并使储热率提高了22.5%。这项研究的重要意义在于,它引入了一种创新的六角形外壳设计,结合非均匀鳍和纳米材料,以提高潜热储存系统的热性能,解决了pcm低导热性的关键挑战。研究结果为优化储能效率提供了有价值的见解,这对于推进可再生能源系统和可持续热管理解决方案至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信