Enhancing PV/T Thermal Efficiency via Passive Air-Gap Cooling With Stagnant Water Heat Sink

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-07-17 DOI:10.1002/htj.70020
Moataz M. Abdel-Aziz, Mohammed El Hadi Attia, Abdelkrim Khelifa, Abdallah Bouabidi
{"title":"Enhancing PV/T Thermal Efficiency via Passive Air-Gap Cooling With Stagnant Water Heat Sink","authors":"Moataz M. Abdel-Aziz,&nbsp;Mohammed El Hadi Attia,&nbsp;Abdelkrim Khelifa,&nbsp;Abdallah Bouabidi","doi":"10.1002/htj.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>High operating temperatures significantly reduce the efficiency and lifespan of photovoltaic (PV) panels, necessitating innovative cooling solutions. This study investigates a novel passive cooling technique for photovoltaic/thermal (PV/T) systems, integrating moving air through a gap between the PV panel and a stagnant water heat sink. The goal is to enhance thermal management and energy output while minimizing reliance on active cooling mechanisms. Two configurations are compared: a standard PV panel (reference) and an optimized PV/T system with the proposed air-gap cooling design. Key findings demonstrate the effectiveness of the optimized system, achieving a maximum air temperature difference of 22.84 K between inlet and outlet, an average thermal power output of 135.68 W, and a 4.15% increase in electrical power output. The thermal efficiency reached 30.05%, marking an 84.90% improvement over the reference setup. These results highlight the system's ability to maintain lower operational temperatures, thereby boosting both electrical and thermal performance. The innovative aspect of this study lies in its unique passive cooling approach, which combines air movement and stagnant water without requiring external energy input. This addresses a critical gap in PV/T literature by offering a cost-effective, low-maintenance solution for hot climates. The study provides valuable insights for optimizing solar energy systems, contributing to sustainable and efficient renewable energy technologies.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 7","pages":"4650-4667"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.70020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

High operating temperatures significantly reduce the efficiency and lifespan of photovoltaic (PV) panels, necessitating innovative cooling solutions. This study investigates a novel passive cooling technique for photovoltaic/thermal (PV/T) systems, integrating moving air through a gap between the PV panel and a stagnant water heat sink. The goal is to enhance thermal management and energy output while minimizing reliance on active cooling mechanisms. Two configurations are compared: a standard PV panel (reference) and an optimized PV/T system with the proposed air-gap cooling design. Key findings demonstrate the effectiveness of the optimized system, achieving a maximum air temperature difference of 22.84 K between inlet and outlet, an average thermal power output of 135.68 W, and a 4.15% increase in electrical power output. The thermal efficiency reached 30.05%, marking an 84.90% improvement over the reference setup. These results highlight the system's ability to maintain lower operational temperatures, thereby boosting both electrical and thermal performance. The innovative aspect of this study lies in its unique passive cooling approach, which combines air movement and stagnant water without requiring external energy input. This addresses a critical gap in PV/T literature by offering a cost-effective, low-maintenance solution for hot climates. The study provides valuable insights for optimizing solar energy systems, contributing to sustainable and efficient renewable energy technologies.

Abstract Image

通过被动气隙冷却与滞水热沉提高PV/T热效率
高工作温度大大降低了光伏(PV)面板的效率和寿命,因此需要创新的冷却解决方案。本研究研究了光伏/热(PV/T)系统的一种新型被动冷却技术,该技术通过光伏面板和滞水散热器之间的间隙整合流动空气。目标是加强热管理和能量输出,同时最大限度地减少对主动冷却机制的依赖。比较了两种配置:标准PV面板(参考)和优化的PV/T系统与拟议的气隙冷却设计。关键结果表明,优化后的系统是有效的,进风口和出风口之间的最大温差为22.84 K,平均热功率输出为135.68 W,电功率输出增加4.15%。热效率达到30.05%,比参考装置提高了84.90%。这些结果突出了该系统保持较低工作温度的能力,从而提高了电气和热性能。这项研究的创新之处在于其独特的被动冷却方法,它结合了空气运动和死水,而不需要外部能量输入。这解决了PV/T文献中的一个关键空白,为炎热气候提供了成本效益高、维护成本低的解决方案。该研究为优化太阳能系统提供了宝贵的见解,为可持续和高效的可再生能源技术做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信