Aspiration Effect on the Convection of a Rotating Hot Rod Covered by an Eccentric Porous Annular Layer

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-06-16 DOI:10.1002/htj.70002
Olalekan Adebayo Olayemi, Ahmed Al-Manea, Muneer A. Ismael
{"title":"Aspiration Effect on the Convection of a Rotating Hot Rod Covered by an Eccentric Porous Annular Layer","authors":"Olalekan Adebayo Olayemi,&nbsp;Ahmed Al-Manea,&nbsp;Muneer A. Ismael","doi":"10.1002/htj.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Low-energy consumption cooling systems can be accomplished through coolant aspiration rather than forced convection. This paper examines the impact of inlet port locations <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>X</mi>\n \n <mi>L</mi>\n </msub>\n \n <mo>,</mo>\n \n <mo> </mo>\n \n <msub>\n <mi>X</mi>\n \n <mi>M</mi>\n </msub>\n \n <mo>,</mo>\n \n <mo> </mo>\n \n <mtext>and </mtext>\n \n <msub>\n <mi>X</mi>\n \n <mi>R</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </semantics></math>, porous layer (<i>PL</i>) eccentricity <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>δ</mi>\n \n <mo>/</mo>\n \n <mi>D</mi>\n \n <mo>≤</mo>\n \n <mn>0.175</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n </mrow>\n </mrow>\n </semantics></math> Darcy number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mrow>\n <mo>−</mo>\n \n <mn>5</mn>\n </mrow>\n </msup>\n \n <mo>≤</mo>\n \n <mi>Da</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, and Richardson number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0.01</mn>\n \n <mo>≤</mo>\n \n <mi>Ri</mi>\n \n <mo>≤</mo>\n \n <mn>10</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> on fluid flow and <i>HT</i> characteristics in an aspirated cavity containing a hot rotating cylinder <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>Ω</mi>\n \n <mo>≤</mo>\n \n <mn>50</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> immersed in a porous medium. The cavity walls are thermally insulated, while the varying inlet port positions are subjected to a fixed cold temperature <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>c</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math> The centrally positioned cylindrical rod is subjected to a uniform heat flux <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>q</mi>\n \n <mo>″</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, and submerged in an annular porous medium. The region between the <i>PL</i> and the heated cylinder consists of the fluid-porous matrix, while the region external to the porous-layer-hot-cylinder arrangement contains clear fluid with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mtext>Pr</mtext>\n \n <mo>=</mo>\n \n <mn>0.7</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </semantics></math>. The relevant dimensionless equations were solved using the Finite element method. The results show, for the parameter combination of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ri</mi>\n \n <mo>=</mo>\n \n <mn>1.0</mn>\n \n <mo>,</mo>\n \n <mo> </mo>\n \n <mo> </mo>\n \n <mi>Da</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n \n <mo> </mo>\n \n <mo> </mo>\n \n <mi>and</mi>\n \n <mo> </mo>\n \n <mo> </mo>\n \n <mi>δ</mi>\n \n <mo>/</mo>\n \n <mi>D</mi>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>, different roles of the lower port positions that are: (i) for motionless cylinder (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>), the middle position exhibits the best <i>Nu</i><sub>av</sub> values, about 8% more than that the left and right positions, while for a relatively low speed, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mo>=</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n </semantics></math>, the middle and right positions produce an <i>Nu</i><sub>av</sub> that is 11% higher than the left position. For higher rotational speed <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mo>≥</mo>\n \n <mn>30</mn>\n </mrow>\n </mrow>\n </semantics></math>, the position of the lower port becomes ineffective on the <i>Nu</i><sub>av</sub>. Darcy number enhances the heat transfer. The results of this investigation have applications in thermal stress management in steel rod production, nuclear reactor technology, and other fields such as the utilization of geothermal energy.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 7","pages":"4407-4427"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-energy consumption cooling systems can be accomplished through coolant aspiration rather than forced convection. This paper examines the impact of inlet port locations ( X L , X M , and  X R ) , porous layer (PL) eccentricity ( 0 δ / D 0.175 ) , Darcy number ( 1 0 5 Da 1 0 1 ) , and Richardson number ( 0.01 Ri 10 ) on fluid flow and HT characteristics in an aspirated cavity containing a hot rotating cylinder ( 0 Ω 50 ) immersed in a porous medium. The cavity walls are thermally insulated, while the varying inlet port positions are subjected to a fixed cold temperature ( T c ) . The centrally positioned cylindrical rod is subjected to a uniform heat flux ( q ) , and submerged in an annular porous medium. The region between the PL and the heated cylinder consists of the fluid-porous matrix, while the region external to the porous-layer-hot-cylinder arrangement contains clear fluid with ( Pr = 0.7 ) . The relevant dimensionless equations were solved using the Finite element method. The results show, for the parameter combination of Ri = 1.0 , Da = 1 0 1 and δ / D = 0 , different roles of the lower port positions that are: (i) for motionless cylinder ( Ω = 0 ), the middle position exhibits the best Nuav values, about 8% more than that the left and right positions, while for a relatively low speed, Ω = 10 , the middle and right positions produce an Nuav that is 11% higher than the left position. For higher rotational speed Ω 30 , the position of the lower port becomes ineffective on the Nuav. Darcy number enhances the heat transfer. The results of this investigation have applications in thermal stress management in steel rod production, nuclear reactor technology, and other fields such as the utilization of geothermal energy.

Abstract Image

偏心多孔环孔层对旋转热棒对流的抽吸效应
低能耗冷却系统可以通过冷却剂吸入而不是强制对流来实现。本文考察了进气道位置(X L,xm,和X R),多孔层(PL)偏心率(0≤δ / D≤0.175);达西号码(1 0−5 .≤Da≤10−1);理查德森数(0.01≤Ri≤10)对含热旋转圆柱体的吸气腔内流体流动和高温特性的研究(0≤Ω)≤50)浸没在多孔介质中。腔壁是隔热的,而不同的入口位置受到固定的冷温度(T c)。 中心位置的圆柱形棒受到均匀的热流(q″),并浸没在环形多孔介质中。PL与加热柱之间的区域为流体-多孔基质,而多孔层-热柱排列外的区域为(Pr = 0.7)的透明流体。采用有限元法求解了相关的无量纲方程。结果表明,当参数组合Ri = 1.0时,Da = 1 0−1δ / D = 0时,下端口位置的不同作用为:(i)对于静止气缸(Ω = 0),中间位置的Nuav值最好,比左右位置的Nuav值高8%左右;Ω = 10,中间和右边位置产生的Nuav比左边位置高11%。当转速更高Ω≥30时,下端口在Nuav上的位置失效。达西数增强了传热。该研究结果可应用于钢棒生产、核反应堆技术以及地热能利用等其他领域的热应力管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信