{"title":"Review on the Pivotal Role of Interfacial Sites in Multicomponent Catalysts for Promoting Selective COx Hydrogenation to Ethanol","authors":"Jinyan Zhang, Feng Zeng, Xiaolei Fan, Huanhao Chen","doi":"10.1002/cctc.202501092","DOIUrl":null,"url":null,"abstract":"<p>With growing emphasis on circular carbon economy, catalytic CO<i><sub>x</sub></i> (CO/CO<sub>2</sub>) conversion offers a sustainable route for ethanol synthesis, yet challenges persist in achieving high selectivity due to competing single-carbon products formation (e.g., CO, methane, and methanol formation). Multicomponent catalysts, which consist of two or more distinct metal species with cooperative synergistic interactions between discrete active sites, exhibit high ethanol selectivity in CO<sub>x</sub> hydrogenation reactions. Here, this review comments on the critical role of interfacial sites, where metal–metal or metal–oxide interactions modulate electronic and geometric properties, in multicomponent bifunctional catalysts for selective CO<sub>x</sub> hydrogenation to ethanol. We first highlight how engineered metal–oxide interfaces and nanoscale metal intimacy (e.g., in Rh-, Cu-, Co-, and in-based multicomponent bifunctional catalysts) synergistically activate CO<i><sub>x</sub></i>, stabilize key intermediates (e.g., CH<i><sub>x</sub>*</i>, CO*, and CH<sub>x</sub>O*), and thereby promoting C─C coupling. Advanced strategies, including atomic layer deposition (ALD), surface organometallic chemistry (SOMC), and strong electrostatic adsorption (SEA), for engineering interfacial sites are then discussed. The mechanistic insights (obtained from advanced characterization) into these catalytic systems are then discussed, followed by the proposed future research avenues for the field. This review serves as the roadmap for developing efficient catalysts to advance CO<sub>x</sub>-to-ethanol technology.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 19","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202501092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202501092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With growing emphasis on circular carbon economy, catalytic COx (CO/CO2) conversion offers a sustainable route for ethanol synthesis, yet challenges persist in achieving high selectivity due to competing single-carbon products formation (e.g., CO, methane, and methanol formation). Multicomponent catalysts, which consist of two or more distinct metal species with cooperative synergistic interactions between discrete active sites, exhibit high ethanol selectivity in COx hydrogenation reactions. Here, this review comments on the critical role of interfacial sites, where metal–metal or metal–oxide interactions modulate electronic and geometric properties, in multicomponent bifunctional catalysts for selective COx hydrogenation to ethanol. We first highlight how engineered metal–oxide interfaces and nanoscale metal intimacy (e.g., in Rh-, Cu-, Co-, and in-based multicomponent bifunctional catalysts) synergistically activate COx, stabilize key intermediates (e.g., CHx*, CO*, and CHxO*), and thereby promoting C─C coupling. Advanced strategies, including atomic layer deposition (ALD), surface organometallic chemistry (SOMC), and strong electrostatic adsorption (SEA), for engineering interfacial sites are then discussed. The mechanistic insights (obtained from advanced characterization) into these catalytic systems are then discussed, followed by the proposed future research avenues for the field. This review serves as the roadmap for developing efficient catalysts to advance COx-to-ethanol technology.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.