MoP/g-C3N4 QDs/TiO2 Nanotubes electrode for enhanced photoelectrochemical water oxidation

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-07-11 DOI:10.1007/s11581-025-06537-1
Shujun Yu, Dongmei Yang, Haoran Wang, Guoshun Gao, Hongfeng Gao, Zhengyang Ren, Pengcheng Wu, Keliang Wu
{"title":"MoP/g-C3N4 QDs/TiO2 Nanotubes electrode for enhanced photoelectrochemical water oxidation","authors":"Shujun Yu,&nbsp;Dongmei Yang,&nbsp;Haoran Wang,&nbsp;Guoshun Gao,&nbsp;Hongfeng Gao,&nbsp;Zhengyang Ren,&nbsp;Pengcheng Wu,&nbsp;Keliang Wu","doi":"10.1007/s11581-025-06537-1","DOIUrl":null,"url":null,"abstract":"<div><p>Developing efficient and stable photoelectrocatalysts for water oxidation is critical for sustainable energy conversion. In this work, a ternary heterostructure composed of TiO₂ nanotubes (TNTs), graphitic carbon nitride quantum dots (g-C₃N₄ QDs), and molybdenum phosphide (MoP) was synthesized via electrochemical anodization and sequential loading strategies. The optimized TiO₂ nanotubes (3 h anodization) exhibited uniform morphology and enhanced crystallinity, serving as an ideal substrate for further modification. The introduction of g-C₃N₄ QDs extended the light absorption range to visible regions, while MoP acted as an effective co-catalyst to accelerate charge transfer and suppress electron–hole recombination. The synergistic effects among the three components significantly improved photoelectrochemical performance, achieving a photocurrent density of 1.18 μA/cm<sup>2</sup> at 1.23 V vs. RHE, which was 3.1 times higher than pristine TiO₂. This work provides a rational design strategy for high-performance photoelectrodes and advances their applications in solar-driven water splitting.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 9","pages":"9499 - 9508"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06537-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and stable photoelectrocatalysts for water oxidation is critical for sustainable energy conversion. In this work, a ternary heterostructure composed of TiO₂ nanotubes (TNTs), graphitic carbon nitride quantum dots (g-C₃N₄ QDs), and molybdenum phosphide (MoP) was synthesized via electrochemical anodization and sequential loading strategies. The optimized TiO₂ nanotubes (3 h anodization) exhibited uniform morphology and enhanced crystallinity, serving as an ideal substrate for further modification. The introduction of g-C₃N₄ QDs extended the light absorption range to visible regions, while MoP acted as an effective co-catalyst to accelerate charge transfer and suppress electron–hole recombination. The synergistic effects among the three components significantly improved photoelectrochemical performance, achieving a photocurrent density of 1.18 μA/cm2 at 1.23 V vs. RHE, which was 3.1 times higher than pristine TiO₂. This work provides a rational design strategy for high-performance photoelectrodes and advances their applications in solar-driven water splitting.

MoP/g-C3N4 QDs/TiO2纳米管电极用于增强光电化学水氧化
开发高效、稳定的水氧化光电催化剂是实现可持续能量转换的关键。本文通过电化学阳极氧化和顺序加载策略,合成了由tio2纳米管(TNTs)、石墨氮化碳量子点(g-C₃N₄QDs)和磷化钼(MoP)组成的三元异质结构。优化后的tio2纳米管(阳极氧化3 h)形貌均匀,结晶度增强,是进一步改性的理想底物。g-C₃N₄QDs的引入将光吸收范围扩展到可见光区域,而MoP作为有效的助催化剂加速电荷转移和抑制电子-空穴复合。三种组分之间的协同作用显著提高了光电化学性能,在1.23 V时光电流密度达到1.18 μA/cm2,是原始tio2的3.1倍。本研究为高性能光电极的设计提供了一种合理的策略,并促进了其在太阳能驱动水分解中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信