Alexey S.T. Rybakov, Vu Anton Lie, Louis Mirecki, Jörg August Becker
{"title":"Growth of rutile GeO2 nanoneedles supported by in situ microscopy","authors":"Alexey S.T. Rybakov, Vu Anton Lie, Louis Mirecki, Jörg August Becker","doi":"10.1016/j.jcrysgro.2025.128351","DOIUrl":null,"url":null,"abstract":"<div><div>Rutile GeO<sub>2</sub> nanoneedles were grown using a method involving eutectics of the Ge-GeO<sub>2</sub> system and chemical transport reactions. The synthesis was carried out at 1095–1215 K in a miniature cell, which is evacuated and sealed, enclosing all products that are generated in reactions. In this cell, one can observe the processes throughout all stages of the method in situ via video microscopy. Differences in the process development depending on the heating time and mass ratio of reagents were revealed. Depending on the latter condition, two ways for growing nanoneedles have been proposed. The needles and other reaction products were studied ex situ using SEM, dark-field and bright-field TEM, HRTEM, SAED, EDX and Raman spectroscopy. The nanoneedles are single crystals without any amorphous surface layer. They are rutile GeO<sub>2</sub> and belong to the tetragonal crystal system. Their longitudinal growth direction is <span><math><mrow><mfenced><mrow><mn>001</mn></mrow></mfenced></mrow></math></span>. The spacings between lattice planes in the longitudinal and lateral directions are found to be 2.8 Å and 3.2 Å respectively. At higher temperatures, larger micrometre-sized crystals of rutile GeO<sub>2</sub> with various morphologies are formed.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"671 ","pages":"Article 128351"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024825003057","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Rutile GeO2 nanoneedles were grown using a method involving eutectics of the Ge-GeO2 system and chemical transport reactions. The synthesis was carried out at 1095–1215 K in a miniature cell, which is evacuated and sealed, enclosing all products that are generated in reactions. In this cell, one can observe the processes throughout all stages of the method in situ via video microscopy. Differences in the process development depending on the heating time and mass ratio of reagents were revealed. Depending on the latter condition, two ways for growing nanoneedles have been proposed. The needles and other reaction products were studied ex situ using SEM, dark-field and bright-field TEM, HRTEM, SAED, EDX and Raman spectroscopy. The nanoneedles are single crystals without any amorphous surface layer. They are rutile GeO2 and belong to the tetragonal crystal system. Their longitudinal growth direction is . The spacings between lattice planes in the longitudinal and lateral directions are found to be 2.8 Å and 3.2 Å respectively. At higher temperatures, larger micrometre-sized crystals of rutile GeO2 with various morphologies are formed.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.