Noah M Blumenthal,M Henry H Stevens,Shinjini Goswami,Ruth D Yanai,Timothy J Fahey,Melany C Fisk
{"title":"Nitrogen and phosphorus co-limitation of tree growth in northern hardwood forests.","authors":"Noah M Blumenthal,M Henry H Stevens,Shinjini Goswami,Ruth D Yanai,Timothy J Fahey,Melany C Fisk","doi":"10.1002/ecy.70217","DOIUrl":null,"url":null,"abstract":"Nutrient limitation of forest growth has been difficult to predict, and in temperate forests, long-term tests of single-nutrient versus multiple-element limitation are few. Nutrient co-limitation is the expected outcome of the ability of plants to adjust allocation to minimize limitation by any single resource. Nutrient limitation of productivity in northern hardwood forests was predicted by the Multiple Element Limitation (MEL) model to shift over time since harvest from single limitation by N to P at ~30 years and then, in mature forests, to co-limitation by N and P. Our work tested those predictions for tree growth in a fully factorial N and P addition experiment in 13 forest stands that we grouped in young (20-30 years), mid-age (40-50 years), and mature (>100 years old) age classes in New Hampshire, USA. Over 8 years of treatment, we found evidence of additive co-limitation of tree growth by N and P. We did not find evidence that limitation varied with time since disturbance. Our results suggest that processes contributing to co-limitation in these northern hardwood forests are effective across stands that vary widely in N status and are not sensitive to disturbance by forest harvest over time periods of several decades.","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"18 1","pages":"e70217"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecy.70217","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nutrient limitation of forest growth has been difficult to predict, and in temperate forests, long-term tests of single-nutrient versus multiple-element limitation are few. Nutrient co-limitation is the expected outcome of the ability of plants to adjust allocation to minimize limitation by any single resource. Nutrient limitation of productivity in northern hardwood forests was predicted by the Multiple Element Limitation (MEL) model to shift over time since harvest from single limitation by N to P at ~30 years and then, in mature forests, to co-limitation by N and P. Our work tested those predictions for tree growth in a fully factorial N and P addition experiment in 13 forest stands that we grouped in young (20-30 years), mid-age (40-50 years), and mature (>100 years old) age classes in New Hampshire, USA. Over 8 years of treatment, we found evidence of additive co-limitation of tree growth by N and P. We did not find evidence that limitation varied with time since disturbance. Our results suggest that processes contributing to co-limitation in these northern hardwood forests are effective across stands that vary widely in N status and are not sensitive to disturbance by forest harvest over time periods of several decades.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.