{"title":"Natural variation of GNP2 enhances grain number to benefit rice yield.","authors":"Qianfeng Hu,Zhikun Zhao,Lingling Ma,Haijian Xia,Zhiqi Ma,Penghui Xu,Xianpeng Wang,Rui Zhu,Yong Zhao,Haifeng Guo,Xiaoyang Zhu,Yawen Zeng,Yinghua Pan,Danting Li,Xingming Sun,Jinjie Li,Hongliang Zhang,Zichao Li,Zhanying Zhang","doi":"10.1038/s41467-025-64564-y","DOIUrl":null,"url":null,"abstract":"Natural variations provide valuable genetic resources for improving rice grain number per panicle (GNP). Here, our genome-wide association study (GWAS) identifies GNP2 and GNP5 as key regulators of GNP that enhance rice yield. GNP5 encodes a bZIP transcription factor binding to the S5779181 locus in the GNP2 promoter, where natural variation significantly influences GNP. GNP2 encodes a conserved GSK3-like kinase that phosphorylates and stabilizes Gnp4/LAX2. The phosphorylated Gnp4/LAX2T175,262D promotes yield by modulating transcription factors involved in panicle development. Haplotype analysis reveals an elite allele combination (Type I) of GNP5 and GNP2 that significantly increases GNP. Field trials demonstrate that enhanced GNP2 expression raises yield by approximately 10%. Our findings thus uncover a genetic resource with application potential for enhancing rice yield.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"123 1","pages":"8848"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64564-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Natural variations provide valuable genetic resources for improving rice grain number per panicle (GNP). Here, our genome-wide association study (GWAS) identifies GNP2 and GNP5 as key regulators of GNP that enhance rice yield. GNP5 encodes a bZIP transcription factor binding to the S5779181 locus in the GNP2 promoter, where natural variation significantly influences GNP. GNP2 encodes a conserved GSK3-like kinase that phosphorylates and stabilizes Gnp4/LAX2. The phosphorylated Gnp4/LAX2T175,262D promotes yield by modulating transcription factors involved in panicle development. Haplotype analysis reveals an elite allele combination (Type I) of GNP5 and GNP2 that significantly increases GNP. Field trials demonstrate that enhanced GNP2 expression raises yield by approximately 10%. Our findings thus uncover a genetic resource with application potential for enhancing rice yield.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.