Conformational plasticity of disordered regions enables sequence-diverse DNA recognition by transcription factor AflR.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shaowen Wu,Fenghua Wang,Weijie Zhou,Xinze Zhang,Lingpeng Zhan,Wenyang Zhang,Wenning Wang,Wolun Zhang,Shaohui Huang,Alisdair R Fernie,Zhijun Liu,Shijuan Yan
{"title":"Conformational plasticity of disordered regions enables sequence-diverse DNA recognition by transcription factor AflR.","authors":"Shaowen Wu,Fenghua Wang,Weijie Zhou,Xinze Zhang,Lingpeng Zhan,Wenyang Zhang,Wenning Wang,Wolun Zhang,Shaohui Huang,Alisdair R Fernie,Zhijun Liu,Shijuan Yan","doi":"10.1038/s41467-025-63926-w","DOIUrl":null,"url":null,"abstract":"The ability of transcription factors to recognize diverse DNA sequences while maintaining binding specificity is required for gene regulation, but the molecular mechanism enabling this flexibility remains poorly understood. Here, we show that the DNA-binding domain of transcription factor AflR employs a structured zinc cluster motif and disordered terminal regions to achieve sequence-diverse DNA recognition. Using NMR spectroscopy, molecular dynamics simulations, and biochemical approaches, we demonstrate that the DNA-binding domain of AflR contains a structured zinc cluster core flanked by dynamic terminal regions. Two AflR DNA-binding domain monomers recognize inverted CG half-sites, with the zinc cluster motif providing sequence-specific anchoring while dynamic termini optimize binding through distributed interactions. While DNA binding induces overall stabilization, the terminal regions retain conformational flexibility in the bound state, enabling adaptation to sequence variations. Both zinc cluster and C-terminal residue mutations significantly disrupt the stability of the complex. Notably, the C-terminal region functions as a conformational hub coordinating structural changes required for stable complex formation with diverse target sequences. This work demonstrates how intrinsic disorder enables transcription factor sequence-diverse recognition while maintaining specificity, providing insight into the molecular basis of multi-target gene regulation.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"107 1","pages":"8861"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63926-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of transcription factors to recognize diverse DNA sequences while maintaining binding specificity is required for gene regulation, but the molecular mechanism enabling this flexibility remains poorly understood. Here, we show that the DNA-binding domain of transcription factor AflR employs a structured zinc cluster motif and disordered terminal regions to achieve sequence-diverse DNA recognition. Using NMR spectroscopy, molecular dynamics simulations, and biochemical approaches, we demonstrate that the DNA-binding domain of AflR contains a structured zinc cluster core flanked by dynamic terminal regions. Two AflR DNA-binding domain monomers recognize inverted CG half-sites, with the zinc cluster motif providing sequence-specific anchoring while dynamic termini optimize binding through distributed interactions. While DNA binding induces overall stabilization, the terminal regions retain conformational flexibility in the bound state, enabling adaptation to sequence variations. Both zinc cluster and C-terminal residue mutations significantly disrupt the stability of the complex. Notably, the C-terminal region functions as a conformational hub coordinating structural changes required for stable complex formation with diverse target sequences. This work demonstrates how intrinsic disorder enables transcription factor sequence-diverse recognition while maintaining specificity, providing insight into the molecular basis of multi-target gene regulation.
无序区域的构象可塑性使转录因子AflR能够识别序列多样化的DNA。
转录因子识别不同DNA序列同时保持结合特异性的能力是基因调控所必需的,但实现这种灵活性的分子机制仍然知之甚少。在这里,我们发现转录因子AflR的DNA结合域采用结构化锌簇基序和无序末端区域来实现序列多样化的DNA识别。利用核磁共振波谱、分子动力学模拟和生化方法,我们证明了AflR的dna结合域包含一个结构锌簇核心,其两侧是动态末端区域。两个AflR dna结合域单体识别反向CG半位点,其中锌簇基序提供序列特异性锚定,而动态末端通过分布式相互作用优化结合。当DNA结合诱导整体稳定时,末端区域在结合状态下保持构象灵活性,使其能够适应序列变化。锌簇和c末端残基突变都明显破坏了复合物的稳定性。值得注意的是,c端区域作为构象枢纽,协调不同靶序列稳定复合物形成所需的结构变化。这项工作证明了内在紊乱如何在保持特异性的同时使转录因子序列多样性识别成为可能,从而深入了解多靶点基因调控的分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信