Maximizing Areal Capacity in All-Solid-State Li-Ion Batteries Using Single Crystalline Ni-Rich Cathodes and Bromide-Based Argyrodite Solid Electrolytes Under Optimized Stack Pressure

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mamta Sham Lal*, , , Arka Saha, , and , Malachi Noked*, 
{"title":"Maximizing Areal Capacity in All-Solid-State Li-Ion Batteries Using Single Crystalline Ni-Rich Cathodes and Bromide-Based Argyrodite Solid Electrolytes Under Optimized Stack Pressure","authors":"Mamta Sham Lal*,&nbsp;, ,&nbsp;Arka Saha,&nbsp;, and ,&nbsp;Malachi Noked*,&nbsp;","doi":"10.1021/acsami.5c12376","DOIUrl":null,"url":null,"abstract":"<p >All-solid-state lithium-ion batteries (ASSLBs) are a promising next-generation energy storage technology for their enhanced safety and high energy density. In this study, we develop high-performance ASSLBs utilizing a Ni-rich single-crystalline NCM811 (SC-NCM811) cathode and a Li<sub>6</sub>PS<sub>5</sub>Br argyrodite solid electrolyte. By optimizing the cathode material and stack pressure, we demonstrate an exceptional areal capacity exceeding 4 mAh/cm<sup>2</sup> with a high cathode loading of ∼21 mg/cm<sup>2</sup>. Electrochemical performance comparisons between SC-NCM811 and polycrystalline NCM811 (PC-NCM811) reveal the superior capacity retention and rate performance of SC-NCM811-based ASSLBs, particularly at an optimized stack pressure. Our findings underscore the potential of SC-NCM811 as a highly efficient cathode material for next-generation ASSLBs, offering both increased energy density and operational safety. This work highlights the importance of cathode engineering and pressure optimization in advancing the implementation of ASSLBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 41","pages":"57046–57058"},"PeriodicalIF":8.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsami.5c12376","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state lithium-ion batteries (ASSLBs) are a promising next-generation energy storage technology for their enhanced safety and high energy density. In this study, we develop high-performance ASSLBs utilizing a Ni-rich single-crystalline NCM811 (SC-NCM811) cathode and a Li6PS5Br argyrodite solid electrolyte. By optimizing the cathode material and stack pressure, we demonstrate an exceptional areal capacity exceeding 4 mAh/cm2 with a high cathode loading of ∼21 mg/cm2. Electrochemical performance comparisons between SC-NCM811 and polycrystalline NCM811 (PC-NCM811) reveal the superior capacity retention and rate performance of SC-NCM811-based ASSLBs, particularly at an optimized stack pressure. Our findings underscore the potential of SC-NCM811 as a highly efficient cathode material for next-generation ASSLBs, offering both increased energy density and operational safety. This work highlights the importance of cathode engineering and pressure optimization in advancing the implementation of ASSLBs.

Abstract Image

利用单晶富镍阴极和溴基银柱石固体电解质在优化堆压下最大化全固态锂离子电池的面积容量
全固态锂离子电池(ASSLBs)因其具有更高的安全性和高能量密度,是一种很有前途的下一代储能技术。在这项研究中,我们利用富镍单晶NCM811 (SC-NCM811)阴极和Li6PS5Br银晶固体电解质开发了高性能ASSLBs。通过优化阴极材料和堆压,我们展示了超过4 mAh/cm2的特殊面积容量和高达21 mg/cm2的阴极负载。通过对SC-NCM811和多晶NCM811 (PC-NCM811)的电化学性能比较,发现SC-NCM811基asslb具有更好的容量保持和速率性能,特别是在优化的堆叠压力下。我们的研究结果强调了SC-NCM811作为下一代asslb的高效阴极材料的潜力,同时提供更高的能量密度和操作安全性。这项工作强调了阴极工程和压力优化在推进asslb实施中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信