Optimizing Electronic Microenvironment on Nickel Single-Atom Catalyst via In Situ Template Replacement for Efficient Electrochemical CO2 reduction

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Zhu, , , Wei Wei, , , Zilong Zhou, , , Zhiyi Li, , and , Zhijun Liu*, 
{"title":"Optimizing Electronic Microenvironment on Nickel Single-Atom Catalyst via In Situ Template Replacement for Efficient Electrochemical CO2 reduction","authors":"Yue Zhu,&nbsp;, ,&nbsp;Wei Wei,&nbsp;, ,&nbsp;Zilong Zhou,&nbsp;, ,&nbsp;Zhiyi Li,&nbsp;, and ,&nbsp;Zhijun Liu*,&nbsp;","doi":"10.1021/acsami.5c09369","DOIUrl":null,"url":null,"abstract":"<p >Optimizing the coordination environment of metal centers in M–N<sub>4</sub> complexes is critical for accelerating the reaction kinetics in electrochemical CO<sub>2</sub> reduction (CO<sub>2</sub>RR). Herein, we report a facile strategy for regulating the atomic coordination microenvironment on nickel single-atom catalysts (Ni SACs) by in situ template replacement during synthesis. By implementing one-pot pyrolysis with dynamically sacrificial template replacement, Ni SACs with axial oxygen coordination at Ni–N<sub>4</sub> sites, anchored on a N, O-<i>co</i>-doped carbon nanosheet framework (Ni–N<sub>4</sub>O–C) were successfully obtained. The optimized catalyst exhibits outstanding performance in the electrochemical conversion of CO<sub>2</sub> to CO, achieving a maximum Faraday efficiency of 95% within a wide potential window of −0.54 to −1.04 V (vs RHE). Notably, it maintains remarkable durability, retaining over 90% efficiency even after prolonged operation at −0.74 V for 90 h. Further mechanistic studies reveal that the oxygen coordination Ni–N<sub>4</sub>O–C site by regulating the coordination microenvironment reduces the free energy barrier for key *COOH intermediates compared to conventional Ni–N<sub>4</sub> sites. Our findings establish a template-mediated coordination environment adjustment method for the SACs design.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 41","pages":"56937–56948"},"PeriodicalIF":8.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c09369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing the coordination environment of metal centers in M–N4 complexes is critical for accelerating the reaction kinetics in electrochemical CO2 reduction (CO2RR). Herein, we report a facile strategy for regulating the atomic coordination microenvironment on nickel single-atom catalysts (Ni SACs) by in situ template replacement during synthesis. By implementing one-pot pyrolysis with dynamically sacrificial template replacement, Ni SACs with axial oxygen coordination at Ni–N4 sites, anchored on a N, O-co-doped carbon nanosheet framework (Ni–N4O–C) were successfully obtained. The optimized catalyst exhibits outstanding performance in the electrochemical conversion of CO2 to CO, achieving a maximum Faraday efficiency of 95% within a wide potential window of −0.54 to −1.04 V (vs RHE). Notably, it maintains remarkable durability, retaining over 90% efficiency even after prolonged operation at −0.74 V for 90 h. Further mechanistic studies reveal that the oxygen coordination Ni–N4O–C site by regulating the coordination microenvironment reduces the free energy barrier for key *COOH intermediates compared to conventional Ni–N4 sites. Our findings establish a template-mediated coordination environment adjustment method for the SACs design.

Abstract Image

Abstract Image

通过原位模板置换优化镍单原子催化剂上的电子微环境以实现高效的电化学CO2还原
优化M-N4配合物中金属中心的配位环境是加快电化学CO2还原反应动力学的关键。在此,我们报告了一种简单的策略来调节镍单原子催化剂(Ni SACs)的原子配位微环境在合成过程中的原位模板替换。通过动态牺牲模板置换的一锅热解,成功获得了在Ni - n4位点具有轴向氧配位的Ni SACs,并锚定在N, o共掺杂碳纳米片框架(Ni - n40o -c)上。优化后的催化剂在CO2到CO的电化学转化中表现出优异的性能,在−0.54到−1.04 V (vs RHE)的宽电位窗口内实现了95%的最大法拉第效率。值得注意的是,它保持了显著的耐久性,即使在−0.74 V下长时间运行90小时,效率仍保持在90%以上。进一步的机制研究表明,与传统的Ni-N4位点相比,通过调节配位微环境,氧配位ni - n40o - c位点降低了关键*COOH中间体的自由能势。本研究结果为sac设计建立了模板介导的协调环境调整方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信