Synergistic Signal Amplification by Cu2O‐Au/Ag Nanozyme in Heterojunction Photoanode for High‐Sensitivity Photoelectrochemical Detection of Cyfra21‐1

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-07 DOI:10.1002/smll.202502779
Yuxiang Dong, Cheng Guo, Rui Zheng, Jialin Wang, Qi Feng, Shuoran Chen, Changqing Ye
{"title":"Synergistic Signal Amplification by Cu2O‐Au/Ag Nanozyme in Heterojunction Photoanode for High‐Sensitivity Photoelectrochemical Detection of Cyfra21‐1","authors":"Yuxiang Dong, Cheng Guo, Rui Zheng, Jialin Wang, Qi Feng, Shuoran Chen, Changqing Ye","doi":"10.1002/smll.202502779","DOIUrl":null,"url":null,"abstract":"Sensitive photoelectrochemical (PEC) analysis relies on high‐efficiency signaling strategies. Here, a hollow Cu<jats:sub>2</jats:sub>O‐Au/Ag nanozyme is developed to realize synergetic signal amplification on a MoS<jats:sub>2</jats:sub>@ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> heterojunction‐based PEC platform for Cyfra21‐1 detection. The MoS<jats:sub>2</jats:sub>@ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> photoelectrode exhibited excellent photoactivity due to the formation of directional built‐in electric fields, providing an additional driving force to enhance the rapid transfer of photo‐induced electrons. To further improve the sensitivity of the immunosensor, a multifunctional Cu<jats:sub>2</jats:sub>O‐Au/Ag nanozyme probe is designed. It amplifies the photocurrent signal through three different mechanisms: the intrinsic enzyme‐like activity of the probe, the localized surface plasmon resonance effect from Au/Ag nanoparticles, and the p‐type Cu<jats:sub>2</jats:sub>O‐driven coreactant scavenging. These properties work synergistically to enable catalytic deposition amplification, competitive light absorption, and coreactant consumption with photoactive substrate, ultimately leading to significant improvement in sensor performance. The proposed platform demonstrated high sensitivity (0.0360 pg mL<jats:sup>−1</jats:sup>), a broad linear range (0.100 pg mL<jats:sup>−1</jats:sup> to 50.0 ng mL<jats:sup>−1</jats:sup>), as well as satisfactory stability and repeatability. This study presents an effective signaling strategy for achieving sensitive bioanalysis through nanozyme‐induced synergistic signal amplification.","PeriodicalId":228,"journal":{"name":"Small","volume":"24 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502779","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sensitive photoelectrochemical (PEC) analysis relies on high‐efficiency signaling strategies. Here, a hollow Cu2O‐Au/Ag nanozyme is developed to realize synergetic signal amplification on a MoS2@ZnIn2S4 heterojunction‐based PEC platform for Cyfra21‐1 detection. The MoS2@ZnIn2S4 photoelectrode exhibited excellent photoactivity due to the formation of directional built‐in electric fields, providing an additional driving force to enhance the rapid transfer of photo‐induced electrons. To further improve the sensitivity of the immunosensor, a multifunctional Cu2O‐Au/Ag nanozyme probe is designed. It amplifies the photocurrent signal through three different mechanisms: the intrinsic enzyme‐like activity of the probe, the localized surface plasmon resonance effect from Au/Ag nanoparticles, and the p‐type Cu2O‐driven coreactant scavenging. These properties work synergistically to enable catalytic deposition amplification, competitive light absorption, and coreactant consumption with photoactive substrate, ultimately leading to significant improvement in sensor performance. The proposed platform demonstrated high sensitivity (0.0360 pg mL−1), a broad linear range (0.100 pg mL−1 to 50.0 ng mL−1), as well as satisfactory stability and repeatability. This study presents an effective signaling strategy for achieving sensitive bioanalysis through nanozyme‐induced synergistic signal amplification.

Abstract Image

Cu2O - Au/Ag纳米酶在异质结光阳极上的协同信号放大用于Cyfra21‐1的高灵敏度光电化学检测
灵敏的光电化学(PEC)分析依赖于高效的信号策略。本文开发了一种空心Cu2O - Au/Ag纳米酶,用于在MoS2@ZnIn2S4异质结型PEC平台上实现Cyfra21 - 1检测的协同信号放大。MoS2@ZnIn2S4光电极由于形成定向内建电场而表现出优异的光活性,为增强光诱导电子的快速转移提供了额外的驱动力。为了进一步提高免疫传感器的灵敏度,设计了多功能Cu2O‐Au/Ag纳米酶探针。它通过三种不同的机制放大光电流信号:探针固有的酶样活性,Au/Ag纳米粒子的局部表面等离子体共振效应,以及p型Cu2O驱动的共反应物清除。这些特性协同作用,实现了催化沉积放大、竞争性光吸收以及光活性衬底的共反应物消耗,最终显著提高了传感器的性能。该平台具有高灵敏度(0.0360 pg mL−1),宽线性范围(0.100 pg mL−1至50.0 ng mL−1),以及令人满意的稳定性和重复性。本研究提出了一种有效的信号策略,通过纳米酶诱导的协同信号放大来实现敏感的生物分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信