Medium‐Entropy Alloy/In Situ N‐doped rGO Catalyst Composite for Ultrahigh Discharge Capacity and High‐Rate Cyclability in Li─CO2Mars Batteries

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-07 DOI:10.1002/smll.202506343
Ankit Kumar Chourasia, Keerti M. Naik, Chandra S. Sharma
{"title":"Medium‐Entropy Alloy/In Situ N‐doped rGO Catalyst Composite for Ultrahigh Discharge Capacity and High‐Rate Cyclability in Li─CO2Mars Batteries","authors":"Ankit Kumar Chourasia, Keerti M. Naik, Chandra S. Sharma","doi":"10.1002/smll.202506343","DOIUrl":null,"url":null,"abstract":"The immense potential of Li─CO<jats:sub>2</jats:sub> batteries in mitigating CO<jats:sub>2</jats:sub> emissions makes them an attractive choice for developing next‐generation high‐energy‐density alternative energy storage systems. However, insufficient Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> decomposition during recharging deactivates the catalyst, reducing the dischargeability and cycle life. Herein, a medium‐entropy quaternary alloy (QA) catalyst comprising of the metals Mn, Zn, Co, and Ni is designed with in situ N‐doped reduced graphene oxide (NrGO) using a multielement metal organic framework (MZIF) (QA@NrGO). The uniformly dispersed quaternary alloy with high disorder and the synergy between the NrGO and QA help Li─CO<jats:sub>2Mars</jats:sub> batteries deliver an ultrahigh discharge capacity of 50605 mAh g<jats:sup>−1</jats:sup> at the high current density of 500 mA g<jats:sup>−1</jats:sup> and a maximum cycle life of 240 cycles. Ex situ post‐cycling physicochemical investigations reveal the formation of disc‐shaped Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> discharge product on the active sites and nearly complete decomposition on charging, confirming the excellent reversibility. Further, the density functional theory (DFT) studies show that improved CO<jats:sub>2</jats:sub> adsorption and the tendency toward relatively stable formation of the discharge products of Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> and amorphous carbon helped achieve the excellent electrochemical performance. The designed medium entropy alloy (MEA) catalyst provides a pathway for developing low‐cost, highly active bifunctional catalysts for Li─CO<jats:sub>2Mars</jats:sub> batteries.","PeriodicalId":228,"journal":{"name":"Small","volume":"70 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202506343","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The immense potential of Li─CO2 batteries in mitigating CO2 emissions makes them an attractive choice for developing next‐generation high‐energy‐density alternative energy storage systems. However, insufficient Li2CO3 decomposition during recharging deactivates the catalyst, reducing the dischargeability and cycle life. Herein, a medium‐entropy quaternary alloy (QA) catalyst comprising of the metals Mn, Zn, Co, and Ni is designed with in situ N‐doped reduced graphene oxide (NrGO) using a multielement metal organic framework (MZIF) (QA@NrGO). The uniformly dispersed quaternary alloy with high disorder and the synergy between the NrGO and QA help Li─CO2Mars batteries deliver an ultrahigh discharge capacity of 50605 mAh g−1 at the high current density of 500 mA g−1 and a maximum cycle life of 240 cycles. Ex situ post‐cycling physicochemical investigations reveal the formation of disc‐shaped Li2CO3 discharge product on the active sites and nearly complete decomposition on charging, confirming the excellent reversibility. Further, the density functional theory (DFT) studies show that improved CO2 adsorption and the tendency toward relatively stable formation of the discharge products of Li2CO3 and amorphous carbon helped achieve the excellent electrochemical performance. The designed medium entropy alloy (MEA) catalyst provides a pathway for developing low‐cost, highly active bifunctional catalysts for Li─CO2Mars batteries.
中熵合金/原位N掺杂氧化石墨烯催化剂复合材料用于Li─CO2Mars电池的超高放电容量和高倍率可循环性
Li─CO2电池在减少二氧化碳排放方面的巨大潜力使其成为开发下一代高能量密度替代储能系统的有吸引力的选择。然而,充电过程中Li2CO3分解不足使催化剂失活,降低了可放电性和循环寿命。本文采用多元素金属有机框架(MZIF) (QA@NrGO),采用原位N掺杂还原氧化石墨烯(NrGO),设计了一种由金属Mn、Zn、Co和Ni组成的中熵季元合金(QA)催化剂。高无序度的均匀分散的季元合金,以及NrGO和QA的协同作用,帮助Li─CO2Mars电池在500 mA g−1的高电流密度下获得50605 mAh g−1的超高放电容量和240次的最大循环寿命。非原位循环后的物理化学研究表明,在活性位点形成圆盘状的Li2CO3放电产物,并且在充电时几乎完全分解,证实了优异的可逆性。此外,密度泛函理论(DFT)研究表明,CO2吸附性能的提高以及Li2CO3和非晶碳的放电产物相对稳定形成的趋势有助于实现优异的电化学性能。所设计的中熵合金(MEA)催化剂为开发低成本、高活性的Li─co2火星电池双功能催化剂提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信