{"title":"Correction to “MAX Phase Purity Contingent Interlayer Spacing Regulated Ti3C2-F MXene Electrodes for Efficient Energy Storage Application”","authors":"","doi":"10.1002/smll.202509303","DOIUrl":null,"url":null,"abstract":"<p>E. Choudhary, M. Samtham, R. Sharma, et al.: MAX Phase Purity Contingent Interlayer Spacing Regulated Ti<sub>3</sub>C<sub>2</sub>-F MXene Electrodes for Efficient Energy Storage Application. <i>Small</i> <i>21</i>, 2410802 (2025). https://doi.org/10.1002/smll.202410802</p>\n<div>Earlier report should be considered with the following minor corrections in the text. It is noteworthy that the below mentioned corrections are technical rather than scientific in nature. Thus, these corrections nowhere alter the scientific discussion/findings of the report and are for the sake of the clarity of the discussion provided. <ol start=\"1\">\n<li>\n<p>Scheme 1, illustrating the effect of the purity of parent MAX phase on electrochemical performance of MXene (extreme right panel), has been updated to reflect the corrected C<sub>s</sub> values.</p>\n</li>\n<li>\n<p>Figure 3d,e and Figure 5b,c should be considered as provided in the updated figure herein.</p>\n</li>\n<li>\n<p>The axis “log Z(ohm)” in Figure 3g should be read as “Z(ohm).”</p>\n</li>\n<li>\n<p>Re-evaluated values should be considered as provided in Table C1 herein.</p>\n</li>\n</ol>\n</div>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/6e509533-9162-4101-b625-69187ce92291/smll71053-fig-0003-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/6e509533-9162-4101-b625-69187ce92291/smll71053-fig-0003-m.jpg\" loading=\"lazy\" src=\"/cms/asset/be72bdc8-6248-478b-88a1-d6405f76c249/smll71053-fig-0003-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Scheme 1<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>Schematic illustration of the purity of parent MAX phase affecting the interlayer spacing and electrochemical performance of MXene.</div>\n</figcaption>\n</figure>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/ccba0fdf-f07e-4a4e-923a-b754baefdb06/smll71053-fig-0001-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/ccba0fdf-f07e-4a4e-923a-b754baefdb06/smll71053-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/4db9054c-0976-43e0-901a-30d58ba38757/smll71053-fig-0001-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Figure 3<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>d) C<sub>s</sub> of MXene (i.e., M<sub>1</sub> to M<sub>4</sub>) and CB@M<sub>4</sub> at different current densities. e) Ragone plot consisting of M<sub>4</sub> and CB@M<sub>4</sub> electrodes.</div>\n</figcaption>\n</figure>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/4bcf87cc-4b9d-493e-abc8-dec779c8a522/smll71053-fig-0002-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/4bcf87cc-4b9d-493e-abc8-dec779c8a522/smll71053-fig-0002-m.jpg\" loading=\"lazy\" src=\"/cms/asset/fb0121b6-a9f3-4f1c-adcd-af15156dd57e/smll71053-fig-0002-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Figure 5<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>b) C<sub>s</sub> and capacity, and c) Ragone plot of the as-fabricated symmetric 2-electrode device of CB@M<sub>4</sub>.</div>\n</figcaption>\n</figure>\n<div>\n<header><span>Table C1. </span>Re-evaluated values of C<sub>s</sub>, C, E<sub>s</sub>, P<sub>s</sub>, E<sub>d</sub>, and P<sub>d</sub>.</header>\n<div tabindex=\"0\">\n<table>\n<thead>\n<tr>\n<td></td>\n<th>Initial</th>\n<th>Re-evaluated</th>\n</tr>\n</thead>\n<tbody>\n<tr>\n<td rowspan=\"5\"><b>C<sub>s</sub> [F g<sup>−1</sup>]</b></td>\n<td>121.86</td>\n<td>60.45</td>\n</tr>\n<tr>\n<td>303.95</td>\n<td>112.57</td>\n</tr>\n<tr>\n<td>401.43</td>\n<td>157.14</td>\n</tr>\n<tr>\n<td>680.8</td>\n<td>193.04</td>\n</tr>\n<tr>\n<td>918.5</td>\n<td>276.97</td>\n</tr>\n<tr>\n<td rowspan=\"2\"><b>E<sub>s</sub> [Wh kg<sup>−1</sup>]</b></td>\n<td>46.27</td>\n<td>15.28</td>\n</tr>\n<tr>\n<td>62.50</td>\n<td>18.85</td>\n</tr>\n<tr>\n<td rowspan=\"2\"><b>P<sub>s</sub> [W kg<sup>−1</sup>]</b></td>\n<td>1061.3</td>\n<td>854.30</td>\n</tr>\n<tr>\n<td>1935.5</td>\n<td>1005.29</td>\n</tr>\n<tr>\n<td rowspan=\"2\"><b>C<sub>s</sub> [F g<sup>−1</sup>]</b></td>\n<td>146.99</td>\n<td>86.17</td>\n</tr>\n<tr>\n<td>94.783</td>\n<td>91.67</td>\n</tr>\n<tr>\n<td rowspan=\"2\"><b>C [mAh g<sup>−1</sup>]</b></td>\n<td>76.54</td>\n<td>36.94</td>\n</tr>\n<tr>\n<td>68.8</td>\n<td>38.22</td>\n</tr>\n<tr>\n<td rowspan=\"2\"><b>E<sub>d</sub> [Wh kg<sup>−1</sup>]</b></td>\n<td>55.58</td>\n<td>28.51</td>\n</tr>\n<tr>\n<td>35.83</td>\n<td>28.68</td>\n</tr>\n<tr>\n<td rowspan=\"2\"><b>E<sub>d</sub> [Wh kg<sup>−1</sup>]</b></td>\n<td>1500.27</td>\n<td>12007.6</td>\n</tr>\n<tr>\n<td>260.88</td>\n<td>1543.39</td>\n</tr>\n</tbody>\n</table>\n</div>\n<div></div>\n</div>","PeriodicalId":228,"journal":{"name":"Small","volume":"24 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202509303","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
E. Choudhary, M. Samtham, R. Sharma, et al.: MAX Phase Purity Contingent Interlayer Spacing Regulated Ti3C2-F MXene Electrodes for Efficient Energy Storage Application. Small21, 2410802 (2025). https://doi.org/10.1002/smll.202410802
Earlier report should be considered with the following minor corrections in the text. It is noteworthy that the below mentioned corrections are technical rather than scientific in nature. Thus, these corrections nowhere alter the scientific discussion/findings of the report and are for the sake of the clarity of the discussion provided.
Scheme 1, illustrating the effect of the purity of parent MAX phase on electrochemical performance of MXene (extreme right panel), has been updated to reflect the corrected Cs values.
Figure 3d,e and Figure 5b,c should be considered as provided in the updated figure herein.
The axis “log Z(ohm)” in Figure 3g should be read as “Z(ohm).”
Re-evaluated values should be considered as provided in Table C1 herein.
Scheme 1
Open in figure viewerPowerPoint
Schematic illustration of the purity of parent MAX phase affecting the interlayer spacing and electrochemical performance of MXene.
Figure 3
Open in figure viewerPowerPoint
d) Cs of MXene (i.e., M1 to M4) and CB@M4 at different current densities. e) Ragone plot consisting of M4 and CB@M4 electrodes.
Figure 5
Open in figure viewerPowerPoint
b) Cs and capacity, and c) Ragone plot of the as-fabricated symmetric 2-electrode device of CB@M4.
Table C1. Re-evaluated values of Cs, C, Es, Ps, Ed, and Pd.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.