Matteo Ciardi, Kasper Rønning Pedersen, Tim Langen, Thomas Pohl
{"title":"Self-Bound Superfluid Membranes and Monolayer Crystals of Ultracold Polar Molecules","authors":"Matteo Ciardi, Kasper Rønning Pedersen, Tim Langen, Thomas Pohl","doi":"10.1103/v7gw-xy36","DOIUrl":null,"url":null,"abstract":"We investigate the physics of ultracold dipolar molecules using path-integral quantum Monte Carlo simulations, and construct the complete phase diagram extending from weak to strong interactions and from small to mesoscopic particle numbers. Our calculations predict the formation of self-bound quantum droplets at interaction strengths lower than previous estimates for molecular condensates. Strikingly, we observe that, for stronger interactions, the oblate quantum droplet transitions to a two-dimensional sheet or superfluid membrane with a thickness of a single molecule. As interactions are increased further the system continually loses superfluidity while correlations develop, and is eventually found to undergo a transition to a crystalline monolayer that remains self-bound without external confinement. The spontaneous formation of such two-dimensional phases from a three-dimensional quantum gas is traced back to the peculiar anisotropic form of the dipole-dipole interaction generated by microwave dressing of rotational molecular states. For sufficiently large particle numbers, crystallization takes place for comparably low interaction strengths that do not promote two-body bound states and should thus be observable in ongoing experiments without limitations from three-body recombination.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"74 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/v7gw-xy36","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the physics of ultracold dipolar molecules using path-integral quantum Monte Carlo simulations, and construct the complete phase diagram extending from weak to strong interactions and from small to mesoscopic particle numbers. Our calculations predict the formation of self-bound quantum droplets at interaction strengths lower than previous estimates for molecular condensates. Strikingly, we observe that, for stronger interactions, the oblate quantum droplet transitions to a two-dimensional sheet or superfluid membrane with a thickness of a single molecule. As interactions are increased further the system continually loses superfluidity while correlations develop, and is eventually found to undergo a transition to a crystalline monolayer that remains self-bound without external confinement. The spontaneous formation of such two-dimensional phases from a three-dimensional quantum gas is traced back to the peculiar anisotropic form of the dipole-dipole interaction generated by microwave dressing of rotational molecular states. For sufficiently large particle numbers, crystallization takes place for comparably low interaction strengths that do not promote two-body bound states and should thus be observable in ongoing experiments without limitations from three-body recombination.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks