Ahmad Fazilat, Keivan Majidzadeh-A, Kambiz Gilany, Fatemeh Mortazavi Moghadam, Mohammad Valilo, Saima Wajid
{"title":"Proteomic Analysis of Serum Samples in Ovulatory Polycystic Ovary Syndrome and Construction of a Protein Interaction Pathway.","authors":"Ahmad Fazilat, Keivan Majidzadeh-A, Kambiz Gilany, Fatemeh Mortazavi Moghadam, Mohammad Valilo, Saima Wajid","doi":"10.1007/s10930-025-10295-4","DOIUrl":null,"url":null,"abstract":"<p><p>As a heterogeneous multifactorial disorder, PCOS still has a misty etiology. Its underlying pathophysiological causes can be further elucidated by proteomic analyses and molecular network analysis to understand the interaction pathways involved in the PCOS-associated perturbations. We conducted a proteomic study on ovulatory PCOS serum samples using nano-LCMS/MS technique. Then, we analysed the proteomic profiles of substantially dysregulated proteins by projecting them onto protein interaction mapping and molecular network analysis software tools Gene Mania and STRING. We further investigated the involvement of the affected proteins in different PCOS-associated disorders and classified them through a review of the literature along with functional annotation software tools DAVID and Panther. We found a total of 228 proteins in serum; 109 were found in both ovulatory PCOS and controls, and 42 of those showed a difference of ≥twofold (19 higher in ovulatory PCOS and 23 lower). Among them, 35 proteins exhibited an association with the pathophysiological mechanisms underlying the manifestation of ovulatory PCOS manifestation and their correlations with PCOS-concurrent disorders were revealed. There were also 87 proteins that were only found in ovulatory PCOS and 32 that were only found in controls. We further highlighted significant functional hub molecules within protein interaction networks. Our findings indicated that the ovulatory PCOS involves a wide range of functional molecule derangements, which trigger aberrant biological responses and molecular interactions leading to the emergence of complications associated with ovulatory PCOS. Further omics studies are required to explain the different physiological mechanisms of the functional molecules contributing to the pathogenicity of this heterogeneous syndrome.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The protein journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10930-025-10295-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As a heterogeneous multifactorial disorder, PCOS still has a misty etiology. Its underlying pathophysiological causes can be further elucidated by proteomic analyses and molecular network analysis to understand the interaction pathways involved in the PCOS-associated perturbations. We conducted a proteomic study on ovulatory PCOS serum samples using nano-LCMS/MS technique. Then, we analysed the proteomic profiles of substantially dysregulated proteins by projecting them onto protein interaction mapping and molecular network analysis software tools Gene Mania and STRING. We further investigated the involvement of the affected proteins in different PCOS-associated disorders and classified them through a review of the literature along with functional annotation software tools DAVID and Panther. We found a total of 228 proteins in serum; 109 were found in both ovulatory PCOS and controls, and 42 of those showed a difference of ≥twofold (19 higher in ovulatory PCOS and 23 lower). Among them, 35 proteins exhibited an association with the pathophysiological mechanisms underlying the manifestation of ovulatory PCOS manifestation and their correlations with PCOS-concurrent disorders were revealed. There were also 87 proteins that were only found in ovulatory PCOS and 32 that were only found in controls. We further highlighted significant functional hub molecules within protein interaction networks. Our findings indicated that the ovulatory PCOS involves a wide range of functional molecule derangements, which trigger aberrant biological responses and molecular interactions leading to the emergence of complications associated with ovulatory PCOS. Further omics studies are required to explain the different physiological mechanisms of the functional molecules contributing to the pathogenicity of this heterogeneous syndrome.