Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity.

IF 2.5 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bayesian Analysis Pub Date : 2025-06-01 Epub Date: 2023-11-23 DOI:10.1214/23-ba1404
Martin Modrák, Angie H Moon, Shinyoung Kim, Paul Bürkner, Niko Huurre, Kateřina Faltejsková, Andrew Gelman, Aki Vehtari
{"title":"Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity.","authors":"Martin Modrák, Angie H Moon, Shinyoung Kim, Paul Bürkner, Niko Huurre, Kateřina Faltejsková, Andrew Gelman, Aki Vehtari","doi":"10.1214/23-ba1404","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation-based calibration checking (SBC) is a practical method to validate computationally-derived posterior distributions or their approximations. In this paper, we introduce a new variant of SBC to alleviate several known problems. Our variant allows the user to in principle detect any possible issue with the posterior, while previously reported implementations could never detect large classes of problems including when the posterior is equal to the prior. This is made possible by including additional data-dependent test quantities when running SBC. We argue and demonstrate that the joint likelihood of the data is an especially useful test quantity. Some other types of test quantities and their theoretical and practical benefits are also investigated. We provide theoretical analysis of SBC, thereby providing a more complete understanding of the underlying statistical mechanisms. We also bring attention to a relatively common mistake in the literature and clarify the difference between SBC and checks based on the data-averaged posterior. We support our recommendations with numerical case studies on a multivariate normal example and a case study in implementing an ordered simplex data type for use with Hamiltonian Monte Carlo. The SBC variant introduced in this paper is implemented in the SBC R package.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"20 2","pages":"461-488"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ba1404","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation-based calibration checking (SBC) is a practical method to validate computationally-derived posterior distributions or their approximations. In this paper, we introduce a new variant of SBC to alleviate several known problems. Our variant allows the user to in principle detect any possible issue with the posterior, while previously reported implementations could never detect large classes of problems including when the posterior is equal to the prior. This is made possible by including additional data-dependent test quantities when running SBC. We argue and demonstrate that the joint likelihood of the data is an especially useful test quantity. Some other types of test quantities and their theoretical and practical benefits are also investigated. We provide theoretical analysis of SBC, thereby providing a more complete understanding of the underlying statistical mechanisms. We also bring attention to a relatively common mistake in the literature and clarify the difference between SBC and checks based on the data-averaged posterior. We support our recommendations with numerical case studies on a multivariate normal example and a case study in implementing an ordered simplex data type for use with Hamiltonian Monte Carlo. The SBC variant introduced in this paper is implemented in the SBC R package.

基于仿真的贝叶斯计算校准检验:试验量形状灵敏度的选择。
基于模拟的校准检验(SBC)是一种验证计算后验分布或其近似的实用方法。在本文中,我们引入了一种新的SBC变体来缓解几个已知的问题。我们的变体原则上允许用户检测到任何可能的后验问题,而以前报道的实现永远无法检测到大量的问题,包括当后验等于先验时。这可以通过在运行SBC时包含额外的数据相关测试量来实现。我们论证并证明了数据的联合似然是一个特别有用的测试量。对其他类型的试验量及其理论和实际效益也进行了探讨。我们提供了SBC的理论分析,从而提供了对潜在统计机制的更完整的理解。我们还注意到文献中一个相对常见的错误,并澄清SBC和基于数据平均后验的检查之间的区别。我们用一个多变量正态例子的数值案例研究和一个用哈密顿蒙特卡罗实现有序单纯形数据类型的案例研究来支持我们的建议。本文介绍的SBC变体是在SBC R包中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信