DISCOVER: a Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of human behavior.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-09-19 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1638539
Tobias Hallmen, Dominik Schiller, Antonia Vehlen, Steffen Eberhardt, Tobias Baur, Daksitha Withanage Don, Wolfgang Lutz, Elisabeth André
{"title":"DISCOVER: a Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of human behavior.","authors":"Tobias Hallmen, Dominik Schiller, Antonia Vehlen, Steffen Eberhardt, Tobias Baur, Daksitha Withanage Don, Wolfgang Lutz, Elisabeth André","doi":"10.3389/fdgth.2025.1638539","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding human behavior is a fundamental goal of social sciences, yet conventional methodologies are often limited by labor-intensive data collection and complex analyses. Computational models offer a promising alternative for analyzing large datasets and identifying key behavioral indicators, but their adoption is hindered by technical complexity and substantial computational requirements. To address these barriers, we introduce <i>DISCOVER</i>, a modular and user-friendly software framework designed to streamline computational data exploration for human behavior analysis. <i>DISCOVER</i> democratizes access to state-of-the-art models, enabling researchers across disciplines to conduct detailed behavioral analyses without extensive technical expertise. In this paper, we are showcasing <i>DISCOVER</i> using four modular data exploration workflows that build on each other: Semantic Content Exploration, Visual Inspection, Aided Annotation, and Multimodal Scene Search. Finally, we report initial findings from a user study. The study examined <i>DISCOVER</i>'s potential to support prospective psychotherapists in structuring information for treatment planning, i.e. case conceptualizations.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1638539"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1638539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding human behavior is a fundamental goal of social sciences, yet conventional methodologies are often limited by labor-intensive data collection and complex analyses. Computational models offer a promising alternative for analyzing large datasets and identifying key behavioral indicators, but their adoption is hindered by technical complexity and substantial computational requirements. To address these barriers, we introduce DISCOVER, a modular and user-friendly software framework designed to streamline computational data exploration for human behavior analysis. DISCOVER democratizes access to state-of-the-art models, enabling researchers across disciplines to conduct detailed behavioral analyses without extensive technical expertise. In this paper, we are showcasing DISCOVER using four modular data exploration workflows that build on each other: Semantic Content Exploration, Visual Inspection, Aided Annotation, and Multimodal Scene Search. Finally, we report initial findings from a user study. The study examined DISCOVER's potential to support prospective psychotherapists in structuring information for treatment planning, i.e. case conceptualizations.

DISCOVER:一个数据驱动的交互系统,用于全面观察、可视化和探索人类行为。
理解人类行为是社会科学的一个基本目标,然而传统的方法往往受到劳动密集型数据收集和复杂分析的限制。计算模型为分析大型数据集和识别关键行为指标提供了一个很有前途的替代方案,但它们的采用受到技术复杂性和大量计算需求的阻碍。为了解决这些障碍,我们引入了DISCOVER,这是一个模块化和用户友好的软件框架,旨在简化人类行为分析的计算数据探索。DISCOVER使访问最先进的模型民主化,使跨学科的研究人员无需广泛的技术专长即可进行详细的行为分析。在本文中,我们展示了DISCOVER使用四个相互构建的模块化数据探索工作流:语义内容探索、视觉检查、辅助注释和多模式场景搜索。最后,我们报告用户研究的初步结果。该研究考察了DISCOVER的潜力,以支持未来的心理治疗师在结构信息的治疗计划,即案例概念化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信