Standardized Estimates of Second-Order Latent Growth Models: A Comparison of Alternative Latent-Standardization Methods.

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yifan Wang, Zhonglin Wen, Kit-Tai Hau, Tonglin Jin
{"title":"Standardized Estimates of Second-Order Latent Growth Models: A Comparison of Alternative Latent-Standardization Methods.","authors":"Yifan Wang, Zhonglin Wen, Kit-Tai Hau, Tonglin Jin","doi":"10.1080/00273171.2025.2543240","DOIUrl":null,"url":null,"abstract":"<p><p>Second-order latent growth models (LGMs) have garnered considerable attention and are increasingly utilized in longitudinal data analyses of latent constructs comprised of multiple items. The growth parameter estimates in these models are intrinsically linked to the model identification methods. Latent-standardization (identification) methods, in which the latent variable is standardized at a reference time point (e.g., eta-1), yield theoretically unique and interpretable growth parameters. Traditional latent-standardization methods indirectly standardize eta-1 <i>via</i> the first-order component of the second-order LGM by constraining item intercepts and/or loadings. Such methods require a two-step modeling procedure and do not truly standardize eta-1. This article proposes a 1-stage method that indirectly standardizes eta-1 through the second-order component of the model by constraining the mean and variance of the level factor. This new single-step modeling method ensures eta-1 is truly standardized, with a mean of 0 and a variance of 1. Theoretical, simulated, and empirical comparisons are conducted across different latent-standardization methods, demonstrating the target accuracy and implementation simplicity of the proposed 1-stage method.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-18"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2543240","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Second-order latent growth models (LGMs) have garnered considerable attention and are increasingly utilized in longitudinal data analyses of latent constructs comprised of multiple items. The growth parameter estimates in these models are intrinsically linked to the model identification methods. Latent-standardization (identification) methods, in which the latent variable is standardized at a reference time point (e.g., eta-1), yield theoretically unique and interpretable growth parameters. Traditional latent-standardization methods indirectly standardize eta-1 via the first-order component of the second-order LGM by constraining item intercepts and/or loadings. Such methods require a two-step modeling procedure and do not truly standardize eta-1. This article proposes a 1-stage method that indirectly standardizes eta-1 through the second-order component of the model by constraining the mean and variance of the level factor. This new single-step modeling method ensures eta-1 is truly standardized, with a mean of 0 and a variance of 1. Theoretical, simulated, and empirical comparisons are conducted across different latent-standardization methods, demonstrating the target accuracy and implementation simplicity of the proposed 1-stage method.

二阶潜在增长模型的标准化估计:潜在标准化方法的比较。
二阶潜在增长模型(LGMs)已经引起了相当大的关注,并越来越多地用于多项目潜在构式的纵向数据分析。这些模型中的增长参数估计与模型识别方法有着内在的联系。潜在标准化(识别)方法,其中潜在变量在参考时间点(例如,eta-1)标准化,产生理论上唯一且可解释的生长参数。传统的潜在标准化方法通过约束项目拦截和/或装载,通过二阶LGM的一阶分量间接地标准化eta-1。这种方法需要两步建模过程,并没有真正标准化eta-1。本文提出了一种1阶段方法,通过约束水平因子的均值和方差,通过模型的二阶分量间接标准化eta-1。这种新的单步建模方法确保了eta-1是真正标准化的,均值为0,方差为1。对不同的潜在标准化方法进行了理论、模拟和实证比较,证明了所提出的1阶段方法的目标准确性和实施简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信