Differences in functional traits and drought tolerance between heteromorphic leaves of Artemisia tridentata seedlings, a keystone species from a semiarid shrubland.

IF 2.4 3区 生物学 Q2 ECOLOGY
AoB Plants Pub Date : 2025-09-14 eCollection Date: 2025-10-01 DOI:10.1093/aobpla/plaf051
Marcelo Serpe, Jacob Venable, Sven Buerki
{"title":"Differences in functional traits and drought tolerance between heteromorphic leaves of <i>Artemisia tridentata</i> seedlings, a keystone species from a semiarid shrubland.","authors":"Marcelo Serpe, Jacob Venable, Sven Buerki","doi":"10.1093/aobpla/plaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf traits are crucial to seedling growth and survival, and their plasticity can influence seedling fitness in changing environments. Seedlings of <i>Artemisia tridentata</i>, a keystone shrub of the western North American sagebrush steppe, show heteromorphic leaf development. Early leaves are larger and less pubescent than those produced later, suggesting a shift from characteristics favouring rapid growth to those increasing drought tolerance. To investigate this hypothesis, we determined the specific leaf area (SLA) and the osmotic potential at full turgor (π<sub>0</sub>) of early and late leaves, and measured their stomatal conductance and photosynthetic rates as leaf water potential (Ψ<sub>l</sub>) declined under imposed drought. We also examined whether water stress could trigger late leaf development. At high Ψ<sub>l</sub> and per area, early and late leaves had similar photosynthetic rates. However, the SLA of early leaves was three times higher than that of late leaves, yielding higher photosynthetic rates per unit mass in the former. Late leaves had lower π<sub>0</sub> and were less sensitive to drought, exhibiting a lower Ψ<sub>l</sub> at 50% of maximum photosynthesis than early leaves. Drought triggered the shedding of early leaves and the initiation of late-like leaves. Formation of these leaves continued upon return to well-watered conditions, possibly indicating stress memory. The overall results suggest that early leaves enhance growth during wet springs following germination, while late leaves prolong photosynthesis as water potentials decline during summer drought. The adaptive value of early leaves may be diminishing due to changing environmental conditions that are accelerating the onset of drought.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 5","pages":"plaf051"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plaf051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf traits are crucial to seedling growth and survival, and their plasticity can influence seedling fitness in changing environments. Seedlings of Artemisia tridentata, a keystone shrub of the western North American sagebrush steppe, show heteromorphic leaf development. Early leaves are larger and less pubescent than those produced later, suggesting a shift from characteristics favouring rapid growth to those increasing drought tolerance. To investigate this hypothesis, we determined the specific leaf area (SLA) and the osmotic potential at full turgor (π0) of early and late leaves, and measured their stomatal conductance and photosynthetic rates as leaf water potential (Ψl) declined under imposed drought. We also examined whether water stress could trigger late leaf development. At high Ψl and per area, early and late leaves had similar photosynthetic rates. However, the SLA of early leaves was three times higher than that of late leaves, yielding higher photosynthetic rates per unit mass in the former. Late leaves had lower π0 and were less sensitive to drought, exhibiting a lower Ψl at 50% of maximum photosynthesis than early leaves. Drought triggered the shedding of early leaves and the initiation of late-like leaves. Formation of these leaves continued upon return to well-watered conditions, possibly indicating stress memory. The overall results suggest that early leaves enhance growth during wet springs following germination, while late leaves prolong photosynthesis as water potentials decline during summer drought. The adaptive value of early leaves may be diminishing due to changing environmental conditions that are accelerating the onset of drought.

半干旱灌丛关键种三叶蒿异型叶片功能性状及耐旱性差异
叶片性状对幼苗的生长和存活至关重要,其可塑性影响着幼苗在变化环境中的适应性。北美西部荞属草原的重要灌木——三叉戟蒿(Artemisia tridentata)幼苗表现出异型叶片发育。早生的叶子比晚生的叶子更大,短柔毛更少,这表明从有利于快速生长的特征向增强抗旱性的特征转变。为了验证这一假说,我们测定了干旱条件下叶片水势(Ψl)下降时,早叶和晚叶的比叶面积(SLA)和充分膨胀时的渗透势(π0),并测量了它们的气孔导度和光合速率。我们还研究了水分胁迫是否会导致叶片发育晚。在高Ψl和单位面积下,早叶和晚叶的光合速率相似。然而,早叶的光合速率是晚叶的3倍,早叶的单位质量光合速率更高。晚叶的π0值较低,对干旱的敏感性较低,在最大光合作用50%时,其Ψl值低于早叶。干旱引发了早叶的脱落和晚叶的形成。这些叶子的形成在回到水分充足的条件下继续,可能表明应激记忆。总体结果表明,在发芽后的潮湿春季,早叶促进了生长,而在夏季干旱期间,由于水势下降,晚叶延长了光合作用。由于环境条件的变化加速了干旱的发生,早叶的适应价值可能正在减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AoB Plants
AoB Plants PLANT SCIENCES-
CiteScore
4.80
自引率
0.00%
发文量
54
审稿时长
20 weeks
期刊介绍: AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信