[A Three‒Tiered AI Framework Toward Precision Oncology-Structuring, Reclassification, and Integration].

Q4 Medicine
Shuya Yano, Tomio Ueno
{"title":"[A Three‒Tiered AI Framework Toward Precision Oncology-Structuring, Reclassification, and Integration].","authors":"Shuya Yano, Tomio Ueno","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence(AI)is transforming cancer medicine across three key domains. First, AI enables the conversion of unstructured visual data-such as pathology slides and radiological images-into structured, quantifiable formats. This improves diagnostic reproducibility and allows for automated tumor detection, classification, and prognostication with accuracy comparable to or exceeding that of specialists. Second, AI facilitates high‒dimensional analysis of omics data, including RNA sequencing and DNA methylation profiles. Machine learning models can uncover latent molecular patterns, predict splicing abnormalities, and identify dependency genes, enabling more refined molecular classification and novel therapeutic target identification. Third, multimodal AI integrates heterogeneous data types-images, genomics, and clinical text-into unified analytical frameworks. This allows for non‒invasive prediction of molecular alterations, treatment responsiveness assessment, and outcome prediction. Integration with large language models(LLMs)further enhances interpretability and enables cross‒modal reasoning in clinical decision‒making contexts. Together, these 3 layers of AI application-image structuring, omics analysis, and multimodal integration-form the foundation for a next‒generation approach to cancer care. AI does not merely automate existing tasks but offers new pathways to understanding cancer's origins, molecular essence, and progression trajectories‒bringing the vision of true precision oncology closer to clinical reality.</p>","PeriodicalId":35588,"journal":{"name":"Japanese Journal of Cancer and Chemotherapy","volume":"52 9","pages":"613-617"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Cancer and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence(AI)is transforming cancer medicine across three key domains. First, AI enables the conversion of unstructured visual data-such as pathology slides and radiological images-into structured, quantifiable formats. This improves diagnostic reproducibility and allows for automated tumor detection, classification, and prognostication with accuracy comparable to or exceeding that of specialists. Second, AI facilitates high‒dimensional analysis of omics data, including RNA sequencing and DNA methylation profiles. Machine learning models can uncover latent molecular patterns, predict splicing abnormalities, and identify dependency genes, enabling more refined molecular classification and novel therapeutic target identification. Third, multimodal AI integrates heterogeneous data types-images, genomics, and clinical text-into unified analytical frameworks. This allows for non‒invasive prediction of molecular alterations, treatment responsiveness assessment, and outcome prediction. Integration with large language models(LLMs)further enhances interpretability and enables cross‒modal reasoning in clinical decision‒making contexts. Together, these 3 layers of AI application-image structuring, omics analysis, and multimodal integration-form the foundation for a next‒generation approach to cancer care. AI does not merely automate existing tasks but offers new pathways to understanding cancer's origins, molecular essence, and progression trajectories‒bringing the vision of true precision oncology closer to clinical reality.

[面向精准肿瘤学的三层人工智能框架——结构、重新分类和整合]。
人工智能(AI)正在三个关键领域改变癌症医学。首先,人工智能可以将非结构化的视觉数据(如病理切片和放射图像)转换为结构化的、可量化的格式。这提高了诊断的可重复性,并允许自动肿瘤检测、分类和预测,其准确性与专家相当或超过专家。其次,人工智能促进了组学数据的高维分析,包括RNA测序和DNA甲基化谱。机器学习模型可以揭示潜在的分子模式,预测剪接异常,识别依赖基因,从而实现更精细的分子分类和新的治疗靶点识别。第三,多模式人工智能将异构数据类型(图像、基因组学和临床文本)集成到统一的分析框架中。这允许无创预测分子改变,治疗反应性评估和结果预测。与大型语言模型(llm)的集成进一步增强了可解释性,并使临床决策环境中的跨模态推理成为可能。这三层人工智能应用——图像结构、组学分析和多模态集成——共同构成了下一代癌症治疗方法的基础。人工智能不仅自动化了现有的任务,而且为了解癌症的起源、分子本质和进展轨迹提供了新的途径——使真正精确的肿瘤学愿景更接近临床现实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
337
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信