Valeria Jose Boide-Trujillo, Vincent Mittelheisser, Fei Liu, Olivier Lefebvre, Bohdan Andreiuk, Nicolas Anton, Jacky G Goetz, Andrey S Klymchenko
{"title":"Functionalization of lipid nanoemulsions with humanized antibodies using plug-and-play cholesterol anchor for targeting cancer cells.","authors":"Valeria Jose Boide-Trujillo, Vincent Mittelheisser, Fei Liu, Olivier Lefebvre, Bohdan Andreiuk, Nicolas Anton, Jacky G Goetz, Andrey S Klymchenko","doi":"10.1039/d5na00606f","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoemulsions (NEs) are promising green nanocarriers for diagnostic and therapeutic applications, but their functionalization with biomolecules, such as antibodies, remains a challenge due to liquid nature of their core. Here, we developed an original plug-and-play strategy to graft an antibody (trastuzumab) at the surface of NEs, using components generally recognized as safe (GRAS). We synthesized a reactive 4-nitrophenyl carbonate of cholesterol (NPC-Chol) and a Biotin-PEG<sub>3000</sub>-Lysine linker, which can react within one-pot formulation to form an amphiphilic carbamate Biotin-PEG<sub>3000</sub>-Cholesterol. The cholesterol ensures anchorage of the linker, which effectively exposes biotin moiety at the surface of NEs for further antibody grafting using a biotin-neutravidin coupling. The reaction between the Biotin-PEG<sub>3000</sub>-Lysine linker and NPC-Chol was confirmed by <sup>1</sup>H-NMR and absorption spectroscopy. The obtained biotinylated 50-nm NEs loaded with a near-infrared dye were successfully targeted to neutravidin-coated glass surfaces and imaged at the single-droplet level. The biotinylated NEs bearing the trastuzumab antibody targeted specifically HER2-amplified breast cancer models HCC-1954 and SKBR3, in contrast to control MDA-MB-231 (HER2-low) cells. Altogether, our study proposes an efficient methodology for grafting antibodies to the surface of NEs, which offers new opportunities of application of these green nanocarriers in biomedicine.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12489389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00606f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoemulsions (NEs) are promising green nanocarriers for diagnostic and therapeutic applications, but their functionalization with biomolecules, such as antibodies, remains a challenge due to liquid nature of their core. Here, we developed an original plug-and-play strategy to graft an antibody (trastuzumab) at the surface of NEs, using components generally recognized as safe (GRAS). We synthesized a reactive 4-nitrophenyl carbonate of cholesterol (NPC-Chol) and a Biotin-PEG3000-Lysine linker, which can react within one-pot formulation to form an amphiphilic carbamate Biotin-PEG3000-Cholesterol. The cholesterol ensures anchorage of the linker, which effectively exposes biotin moiety at the surface of NEs for further antibody grafting using a biotin-neutravidin coupling. The reaction between the Biotin-PEG3000-Lysine linker and NPC-Chol was confirmed by 1H-NMR and absorption spectroscopy. The obtained biotinylated 50-nm NEs loaded with a near-infrared dye were successfully targeted to neutravidin-coated glass surfaces and imaged at the single-droplet level. The biotinylated NEs bearing the trastuzumab antibody targeted specifically HER2-amplified breast cancer models HCC-1954 and SKBR3, in contrast to control MDA-MB-231 (HER2-low) cells. Altogether, our study proposes an efficient methodology for grafting antibodies to the surface of NEs, which offers new opportunities of application of these green nanocarriers in biomedicine.