Brady L Spencer, Dustin T Nguyen, Stephanie M Marroquin, Laurent Gapin, Rebecca L O'Brien, Kelly S Doran
{"title":"Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization.","authors":"Brady L Spencer, Dustin T Nguyen, Stephanie M Marroquin, Laurent Gapin, Rebecca L O'Brien, Kelly S Doran","doi":"10.1159/000548044","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance.</p><p><strong>Methods: </strong>Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization.</p><p><strong>Results: </strong>We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization.</p><p><strong>Conclusions: </strong>Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"1-22"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000548044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance.
Methods: Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization.
Results: We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization.
Conclusions: Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.
期刊介绍:
The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.