Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization.

IF 3 3区 医学 Q2 IMMUNOLOGY
Brady L Spencer, Dustin T Nguyen, Stephanie M Marroquin, Laurent Gapin, Rebecca L O'Brien, Kelly S Doran
{"title":"Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization.","authors":"Brady L Spencer, Dustin T Nguyen, Stephanie M Marroquin, Laurent Gapin, Rebecca L O'Brien, Kelly S Doran","doi":"10.1159/000548044","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance.</p><p><strong>Methods: </strong>Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization.</p><p><strong>Results: </strong>We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization.</p><p><strong>Conclusions: </strong>Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"1-22"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000548044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance.

Methods: Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization.

Results: We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization.

Conclusions: Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.

B群链球菌阴道定植的细胞免疫反应特征。
B群链球菌(GBS)无症状寄生于女性生殖道(FGT),但可导致不良妊娠结局,包括早产、绒毛膜羊膜炎和新生儿感染。我们之前观察到,GBS在小鼠阴道定植过程中引发FGT细胞因子反应,包括IL-17;然而,在定植过程中抗gbs细胞免疫反应仍然未知。我们假设GBS可能诱导细胞免疫,导致FGT清除。方法:在此,我们利用耗尽抗体和敲除小鼠,并使用流式细胞术研究GBS定植过程中的细胞免疫反应。结果:我们发现中性粒细胞(IL-17反应的效应物)对GBS粘膜控制很重要,因为中性粒细胞耗损会增加GBS在FGT组织中的负担。然而,对阴道、宫颈和子宫免疫群体的流式细胞分析显示,GBS定植并没有诱导FGT CD45+免疫细胞的显著增加。我们还发现,v - γ6+ γδ T细胞是FGT IL-17的主要来源。最后,通过敲除小鼠,我们观察到产生il -17的γδ T细胞在小鼠定植过程中对FGT中GBS的控制很重要。结论:综上所述,这项工作表征了FGT细胞免疫,并表明GBS定植不会引起显著的免疫反应,这可能是细菌导向的适应性结果。然而,某些FGT免疫细胞,如中性粒细胞和γ δ T细胞,有助于宿主防御和控制GBS定植。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Innate Immunity
Journal of Innate Immunity 医学-免疫学
CiteScore
10.50
自引率
1.90%
发文量
35
审稿时长
7.5 months
期刊介绍: The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信