{"title":"Performance of salivary microbiota in detecting periodontitis using a machine learning approach.","authors":"Shinya Kageyama, Shion Hama, Michiko Furuta, Mikari Asakawa, Shintaro Kawano, Toshiharu Ninomiya, Toru Takeshita","doi":"10.3389/fcimb.2025.1631798","DOIUrl":null,"url":null,"abstract":"<p><p>Altered salivary microbiota due to the progression of periodontitis may serve as a marker for simple and accurate identification of periodontitis. In this study, we examined saliva samples collected from 2,050 community-dwelling adults using 16S rRNA gene sequencing and verified the predictive performance of salivary microbiota in detecting periodontitis using a light gradient boosting machine algorithm. Five-fold stratified cross-validation was applied with 10 iterations, and the predictive performance was evaluated using the mean area under the receiver operating characteristic curve (AUC) value. In detecting periodontitis defined by number of teeth with probing depth ≥4 mm, localized (≥2 teeth), intermediate (≥4 teeth), and generalized (≥6 teeth) cases were detected with mean AUC values of 0.81 (95% confidence intervals, 0.80-0.81), 0.85 (0.84-0.86), and 0.87 (0.87-0.88), showing an increasing trend with extent. According to the Shapley additive explanation analysis, <i>Porphromonas gingivalis</i>, <i>Tannerella forsythia</i>, <i>Mycoplasma faucium, Treponema</i> species HMT-237, and <i>Fretibacterium</i> species HMT-362 were identified as important features for the detection of periodontitis. Our study presents the potential of salivary microbiota as a tool for mass screening of periodontitis and provides information on novel and important targets, including taxa other than known periodontal pathogens, to establish salivary screening tests.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1631798"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1631798","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Altered salivary microbiota due to the progression of periodontitis may serve as a marker for simple and accurate identification of periodontitis. In this study, we examined saliva samples collected from 2,050 community-dwelling adults using 16S rRNA gene sequencing and verified the predictive performance of salivary microbiota in detecting periodontitis using a light gradient boosting machine algorithm. Five-fold stratified cross-validation was applied with 10 iterations, and the predictive performance was evaluated using the mean area under the receiver operating characteristic curve (AUC) value. In detecting periodontitis defined by number of teeth with probing depth ≥4 mm, localized (≥2 teeth), intermediate (≥4 teeth), and generalized (≥6 teeth) cases were detected with mean AUC values of 0.81 (95% confidence intervals, 0.80-0.81), 0.85 (0.84-0.86), and 0.87 (0.87-0.88), showing an increasing trend with extent. According to the Shapley additive explanation analysis, Porphromonas gingivalis, Tannerella forsythia, Mycoplasma faucium, Treponema species HMT-237, and Fretibacterium species HMT-362 were identified as important features for the detection of periodontitis. Our study presents the potential of salivary microbiota as a tool for mass screening of periodontitis and provides information on novel and important targets, including taxa other than known periodontal pathogens, to establish salivary screening tests.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.