{"title":"Zinc and copper metallodrugs: a 20-year perspective on therapeutic strategies and future directions.","authors":"Carla Peron, Sidnei Moura","doi":"10.1080/17568919.2025.2570967","DOIUrl":null,"url":null,"abstract":"<p><p>This review explores the use of metallodrugs, compounds formed by coordinating metals with organic molecules, as a promising strategy to enhance therapeutic efficacy and address the limitations of conventional drugs. Essential metals, such as copper and zinc, play critical biological roles and can impart unique pharmacological properties, including improved solubility, bioactivity, and selectivity, while potentially reducing toxicity. Despite these advantages, modeling and characterizing metallodrugs remains challenging due to their variable oxidation states and diverse coordination geometries. Advanced techniques, such as NMR spectroscopy, X-ray crystallography, and mass spectrometry, are crucial for elucidating their structure and function. The future development of these drugs relies on refining these methodologies and implementing innovative delivery strategies, like metal-organic frameworks (MOFs), to create safer and more effective therapies. By strategically designing metal-ligand interactions, metallodrugs can achieve targeted bioactivity and overcome resistance mechanisms, positioning them as next-generation therapeutics with the potential to transform treatments in oncology, infectious diseases, and beyond.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-14"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2570967","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores the use of metallodrugs, compounds formed by coordinating metals with organic molecules, as a promising strategy to enhance therapeutic efficacy and address the limitations of conventional drugs. Essential metals, such as copper and zinc, play critical biological roles and can impart unique pharmacological properties, including improved solubility, bioactivity, and selectivity, while potentially reducing toxicity. Despite these advantages, modeling and characterizing metallodrugs remains challenging due to their variable oxidation states and diverse coordination geometries. Advanced techniques, such as NMR spectroscopy, X-ray crystallography, and mass spectrometry, are crucial for elucidating their structure and function. The future development of these drugs relies on refining these methodologies and implementing innovative delivery strategies, like metal-organic frameworks (MOFs), to create safer and more effective therapies. By strategically designing metal-ligand interactions, metallodrugs can achieve targeted bioactivity and overcome resistance mechanisms, positioning them as next-generation therapeutics with the potential to transform treatments in oncology, infectious diseases, and beyond.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.