Shuhang Gao, Bojia Liu, Mengying Tong, Yalin Zhu, Lina Wang, Linyao Du, Chang Shi, Mei Han, Ying Che
{"title":"A cascaded clinical-ultrasound-biochemical model for precise prediction before thyroid nodule fine-needle aspiration biopsy.","authors":"Shuhang Gao, Bojia Liu, Mengying Tong, Yalin Zhu, Lina Wang, Linyao Du, Chang Shi, Mei Han, Ying Che","doi":"10.3389/fmed.2025.1641266","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Determining the nature of thyroid nodules through a single fine-needle aspiration (FNA) biopsy is not feasible for approximately one-third of patients. We developed a predictive model to assist FNA decision-making and reduce unnecessary FNAs.</p><p><strong>Methods: </strong>This retrospective study consecutively included patients who underwent ultrasound-guided FNA between March 2018 and March 2023. Patients were divided into a training dataset (70%) and a validation dataset (30%). Univariate analysis was performed within the training dataset using Kruskal-Wallis test for continuous variables and chi-square test or Fisher's exact test for categorical variables. Variables with significance were entered into multivariate logistic regression. The prediction model (B-Model) was constructed using a cascaded three-stage logistic regression framework: Stage I distinguished benign from non-benign nodules, Stage II differentiated malignant from non-malignant nodules, Stage III separated follicular neoplasm from indeterminate/atypia nodules. Model performance was assessed in the validation dataset using sensitivity (SEN), specificity (SPE), and accuracy (ACC). The reduction in repeat FNA facilitated by the B-Model was calculated.</p><p><strong>Results: </strong>Training and validation datasets included 1,573 and 672 cases, respectively. The overall SEN, SPE and ACC of the B-Model were 84.7%, 76.7% and 60.1% in the validation dataset. The application of the B-Model reduced the number of patients requiring repeat FNA from 255 to 153, resulting in a 40.0% reduction.</p><p><strong>Conclusion: </strong>The B-Model demonstrated robust predictive performance, facilitating the optimization of pre-FNA diagnostic workflows, significantly reducing unnecessary repeat FNAs, and advancing precision in thyroid nodule management.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1641266"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1641266","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Determining the nature of thyroid nodules through a single fine-needle aspiration (FNA) biopsy is not feasible for approximately one-third of patients. We developed a predictive model to assist FNA decision-making and reduce unnecessary FNAs.
Methods: This retrospective study consecutively included patients who underwent ultrasound-guided FNA between March 2018 and March 2023. Patients were divided into a training dataset (70%) and a validation dataset (30%). Univariate analysis was performed within the training dataset using Kruskal-Wallis test for continuous variables and chi-square test or Fisher's exact test for categorical variables. Variables with significance were entered into multivariate logistic regression. The prediction model (B-Model) was constructed using a cascaded three-stage logistic regression framework: Stage I distinguished benign from non-benign nodules, Stage II differentiated malignant from non-malignant nodules, Stage III separated follicular neoplasm from indeterminate/atypia nodules. Model performance was assessed in the validation dataset using sensitivity (SEN), specificity (SPE), and accuracy (ACC). The reduction in repeat FNA facilitated by the B-Model was calculated.
Results: Training and validation datasets included 1,573 and 672 cases, respectively. The overall SEN, SPE and ACC of the B-Model were 84.7%, 76.7% and 60.1% in the validation dataset. The application of the B-Model reduced the number of patients requiring repeat FNA from 255 to 153, resulting in a 40.0% reduction.
Conclusion: The B-Model demonstrated robust predictive performance, facilitating the optimization of pre-FNA diagnostic workflows, significantly reducing unnecessary repeat FNAs, and advancing precision in thyroid nodule management.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world