Micromelt sampling of the glacier algal nutrient environment.

IF 3.2 3区 生物学 Q2 MICROBIOLOGY
Madeleine Lewis, Emily L M Broadwell, Jasmin L Millar, Elizabeth R Thomas, Patricia Sanchez-Baracaldo, Christopher J Williamson
{"title":"Micromelt sampling of the glacier algal nutrient environment.","authors":"Madeleine Lewis, Emily L M Broadwell, Jasmin L Millar, Elizabeth R Thomas, Patricia Sanchez-Baracaldo, Christopher J Williamson","doi":"10.1093/femsec/fiaf098","DOIUrl":null,"url":null,"abstract":"<p><p>Zygnematophycean \"glacier algae\" form extensive blooms on ablating glacier surfaces despite the ultra-oligotrophic conditions apparent. Previous work has postulated that this oligotrophic bloom paradox is due to i) lower nutrient requirements of glacier algae, ii) efficient uptake and storage of the nutrients available, and/or iii) ineffective characterisation of the actual nutrient environment that glacier algae experience. We investigate the latter here by directly sampling the thin (∼2 mm) melt water film in which glacier algal cells reside across three glaciers in Svalbard during the 2023 melt season, comparing to outcomes from more typical bulk ice sampling techniques. Micromelt samples generally contained increased concentrations of ammonium (NH4+), nitrate (NO3-), nitrite (NO2-) and phosphate (PO43-), though trends were not uniform, and concentrations remained well within oligotrophic levels. Several major ion species were significantly increased in micromelt fractions as compared to bulk samples, indicating aeolian deposition and marine aerosol influences on the glacier algal environment. In turn, enhanced micromelt dissolved organic carbon concentrations (DOC) indicated likely DOC delivery by glacier algae to the microbial food web from the onset of bloom formation. Taken together, datasets reveal new fine-scale heterogeneity in the glacier algal meltwater environment.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf098","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Zygnematophycean "glacier algae" form extensive blooms on ablating glacier surfaces despite the ultra-oligotrophic conditions apparent. Previous work has postulated that this oligotrophic bloom paradox is due to i) lower nutrient requirements of glacier algae, ii) efficient uptake and storage of the nutrients available, and/or iii) ineffective characterisation of the actual nutrient environment that glacier algae experience. We investigate the latter here by directly sampling the thin (∼2 mm) melt water film in which glacier algal cells reside across three glaciers in Svalbard during the 2023 melt season, comparing to outcomes from more typical bulk ice sampling techniques. Micromelt samples generally contained increased concentrations of ammonium (NH4+), nitrate (NO3-), nitrite (NO2-) and phosphate (PO43-), though trends were not uniform, and concentrations remained well within oligotrophic levels. Several major ion species were significantly increased in micromelt fractions as compared to bulk samples, indicating aeolian deposition and marine aerosol influences on the glacier algal environment. In turn, enhanced micromelt dissolved organic carbon concentrations (DOC) indicated likely DOC delivery by glacier algae to the microbial food web from the onset of bloom formation. Taken together, datasets reveal new fine-scale heterogeneity in the glacier algal meltwater environment.

冰川藻类营养环境的微熔体取样。
尽管极贫营养条件很明显,但在消融的冰川表面上,zynematophycean“冰川藻类”形成了广泛的水华。先前的研究假设,这种低营养水华悖论是由于i)冰川藻类的营养需求较低,ii)有效吸收和储存可用的营养物质,和/或iii)冰川藻类所经历的实际营养环境的无效特征。在2023年融化季节,我们通过直接对斯瓦尔巴群岛三座冰川上的冰川藻类细胞所处的薄(~ 2毫米)融化水膜进行取样来研究后者,并与更典型的大块冰取样技术的结果进行比较。微熔体样品中铵态氮(NH4+)、硝态氮(NO3-)、亚硝酸盐(NO2-)和磷酸盐(PO43-)的浓度总体呈上升趋势,但趋势并不均匀,且浓度保持在低营养水平。与大量样品相比,微熔体组分中的几种主要离子种类显著增加,表明风成沉积和海洋气溶胶对冰川藻类环境的影响。微熔体溶解有机碳浓度(DOC)的增加表明,从水华形成开始,冰川藻类就可能向微生物食物网输送DOC。综合起来,数据集揭示了冰川藻类融水环境新的精细尺度异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信