MoEPH: an adaptive fusion-based LLM for predicting phage-host interactions in health informatics.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-09-18 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1634705
Qian Chen, Zihang Zhao, Min Li, Wenchen Song, Minfeng Xiao, Min Fang
{"title":"MoEPH: an adaptive fusion-based LLM for predicting phage-host interactions in health informatics.","authors":"Qian Chen, Zihang Zhao, Min Li, Wenchen Song, Minfeng Xiao, Min Fang","doi":"10.3389/fmicb.2025.1634705","DOIUrl":null,"url":null,"abstract":"<p><p>Phage-host interaction prediction plays a crucial role in the development of phage therapy, particularly in combating antimicrobial resistance (AMR). Current in silico models often suffer from limited generalizability and low interpretability. To address these gaps, we introduce MoEPH (Mixture-of-Experts for Phage-Host prediction), a novel framework that integrates transformer-based protein embeddings (ProtBERT and ProT5) with domain-specific statistical descriptors. Our model dynamically combines features using a gated fusion mechanism, ensuring robust and adaptive prediction. We evaluate MoEPH on three publicly available phage-host interaction databases: Dataset 1 (101 host strains, 129 phages), Dataset 2 (38 host strains, 176 phages), and Dataset 3 (combined). Experimental results demonstrate that MoEPH outperforms existing methods, achieving an accuracy of 99.6% on balanced datasets and a 31% improvement on highly imbalanced data. The model provides a transparent, dynamic and knowledge-driven fusion solution for phage-host prediction, contributing to more effective phage therapy recommendations. Future work will focus on incorporating structural protein features and exploring alternative neural backbones for further enhancement.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1634705"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1634705","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phage-host interaction prediction plays a crucial role in the development of phage therapy, particularly in combating antimicrobial resistance (AMR). Current in silico models often suffer from limited generalizability and low interpretability. To address these gaps, we introduce MoEPH (Mixture-of-Experts for Phage-Host prediction), a novel framework that integrates transformer-based protein embeddings (ProtBERT and ProT5) with domain-specific statistical descriptors. Our model dynamically combines features using a gated fusion mechanism, ensuring robust and adaptive prediction. We evaluate MoEPH on three publicly available phage-host interaction databases: Dataset 1 (101 host strains, 129 phages), Dataset 2 (38 host strains, 176 phages), and Dataset 3 (combined). Experimental results demonstrate that MoEPH outperforms existing methods, achieving an accuracy of 99.6% on balanced datasets and a 31% improvement on highly imbalanced data. The model provides a transparent, dynamic and knowledge-driven fusion solution for phage-host prediction, contributing to more effective phage therapy recommendations. Future work will focus on incorporating structural protein features and exploring alternative neural backbones for further enhancement.

Abstract Image

Abstract Image

Abstract Image

MoEPH:用于预测健康信息学中噬菌体-宿主相互作用的自适应融合法学硕士。
噬菌体-宿主相互作用预测在噬菌体治疗的发展中起着至关重要的作用,特别是在对抗抗菌素耐药性(AMR)方面。当前的计算机模型通常具有有限的通用性和较低的可解释性。为了解决这些差距,我们引入了MoEPH(噬菌体-宿主预测专家组合),这是一个将基于转化体的蛋白质嵌入(ProtBERT和ProT5)与特定域统计描述符集成在一起的新框架。我们的模型使用门控融合机制动态地组合特征,确保鲁棒性和自适应预测。我们在三个公开的噬菌体-宿主相互作用数据库上评估MoEPH:数据集1(101个宿主菌株,129个噬菌体),数据集2(38个宿主菌株,176个噬菌体)和数据集3(合并)。实验结果表明,MoEPH优于现有方法,在平衡数据集上的准确率达到99.6%,在高度不平衡数据集上的准确率提高了31%。该模型为噬菌体-宿主预测提供了透明、动态和知识驱动的融合解决方案,有助于提供更有效的噬菌体治疗建议。未来的工作将集中在结合结构蛋白特征和探索替代神经骨干以进一步增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信