Cellular responses of lung cells cultured at an Air-liquid Interface are influenced by spatial nanoparticle deposition patterns in an in vitro aerosol exposure system.
Sripriya Nannu Shankar, Amber O'Connor, Kiran Mital, Yuetong Zhang, Alex Theodore, Amin Shirkhani, Stavros Amanatidis, Gregory S Lewis, Arantzazu-Eiguren Fernandez, Trevor B Tilly, Otmar Schmid, Tara Sabo-Attwood, Chang-Yu Wu
{"title":"Cellular responses of lung cells cultured at an Air-liquid Interface are influenced by spatial nanoparticle deposition patterns in an <i>in vitro</i> aerosol exposure system.","authors":"Sripriya Nannu Shankar, Amber O'Connor, Kiran Mital, Yuetong Zhang, Alex Theodore, Amin Shirkhani, Stavros Amanatidis, Gregory S Lewis, Arantzazu-Eiguren Fernandez, Trevor B Tilly, Otmar Schmid, Tara Sabo-Attwood, Chang-Yu Wu","doi":"10.1080/02786826.2024.2442524","DOIUrl":null,"url":null,"abstract":"<p><p>The deposition of inhaled particles is typically highly localized in both the bronchial and alveolar region of the lung displaying spot-like, line-like and other deposition patterns. However, knowledge is very limited on how different deposition patterns may influence downstream cellular responses. In this study, the Dosimetric Aerosol <i>in Vitro</i> Inhalation Device (DAVID) was used for dose-controlled deposition of cupric oxide nanoparticles (CuONPs) in four different patterns (i.e., spot, ring, line and circle) on human alveolar A549 cells cultured at an air-liquid interface (ALI). After CuONP deposition (<15 min) and a 24 h incubation phase, cell viability, apoptotic / necrotic cell count, and gene expressions were measured. At the lowest dose of ~5 μg/cm<sup>2</sup>, the line pattern resulted in the lowest viability of cells (57%), followed by the spot pattern (85%) while the ring and circle patterns exhibited >90% viability, compared to the particle free air control. At the highest dose of ~20 μg/cm<sup>2</sup>, the viability reduced to 44%-60% for all patterns. Also, the gene profile was found to depend on deposition pattern. The results demonstrate that the deposition pattern is a critical parameter influencing cellular response, thus an important parameter to consider in toxicity and drug delivery studies. Furthermore, the ability of DAVID to control the delivery of aerosolized particles in various deposition patterns was demonstrated, which enables implementation of nonhomogeneous particle deposition patterns that mimic real-life human inhalation exposures in future <i>in vitro</i> toxicology studies.</p>","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"59 10","pages":"1198-1209"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02786826.2024.2442524","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The deposition of inhaled particles is typically highly localized in both the bronchial and alveolar region of the lung displaying spot-like, line-like and other deposition patterns. However, knowledge is very limited on how different deposition patterns may influence downstream cellular responses. In this study, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was used for dose-controlled deposition of cupric oxide nanoparticles (CuONPs) in four different patterns (i.e., spot, ring, line and circle) on human alveolar A549 cells cultured at an air-liquid interface (ALI). After CuONP deposition (<15 min) and a 24 h incubation phase, cell viability, apoptotic / necrotic cell count, and gene expressions were measured. At the lowest dose of ~5 μg/cm2, the line pattern resulted in the lowest viability of cells (57%), followed by the spot pattern (85%) while the ring and circle patterns exhibited >90% viability, compared to the particle free air control. At the highest dose of ~20 μg/cm2, the viability reduced to 44%-60% for all patterns. Also, the gene profile was found to depend on deposition pattern. The results demonstrate that the deposition pattern is a critical parameter influencing cellular response, thus an important parameter to consider in toxicity and drug delivery studies. Furthermore, the ability of DAVID to control the delivery of aerosolized particles in various deposition patterns was demonstrated, which enables implementation of nonhomogeneous particle deposition patterns that mimic real-life human inhalation exposures in future in vitro toxicology studies.
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.