Zn2+ transients and signaling in mammalian systems.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ananya Rakshit, Amy E Palmer
{"title":"Zn<sup>2+</sup> transients and signaling in mammalian systems.","authors":"Ananya Rakshit, Amy E Palmer","doi":"10.1016/j.tibs.2025.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Labile zinc (Zn<sup>2+</sup>) represents an important fraction of the total intracellular zinc pool that is readily available for binding. The signaling function of labile Zn<sup>2+</sup> lies in its dynamic nature. Fluctuations in labile Zn<sup>2+</sup> concentrations caused by either endogenous or exogenous stimuli can transiently influence cellular microenvironments, leading to modulation of signaling pathways. In this review, we focus on recent findings of zinc transients that influence cellular processes in mammalian systems. We highlight different types of zinc transients and how cellular zinc status plays regulatory roles in early development, gene expression, and kinase or neuronal signaling. Although the molecular mechanism behind how zinc transients activate signaling cascades is not clear in all cases, charting these interactions is the first step in the process.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.09.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Labile zinc (Zn2+) represents an important fraction of the total intracellular zinc pool that is readily available for binding. The signaling function of labile Zn2+ lies in its dynamic nature. Fluctuations in labile Zn2+ concentrations caused by either endogenous or exogenous stimuli can transiently influence cellular microenvironments, leading to modulation of signaling pathways. In this review, we focus on recent findings of zinc transients that influence cellular processes in mammalian systems. We highlight different types of zinc transients and how cellular zinc status plays regulatory roles in early development, gene expression, and kinase or neuronal signaling. Although the molecular mechanism behind how zinc transients activate signaling cascades is not clear in all cases, charting these interactions is the first step in the process.

哺乳动物系统中的Zn2+瞬态和信号传导。
不稳定锌(Zn2+)是细胞内锌池中很容易结合的重要组成部分。不稳定的Zn2+的信号功能在于它的动态性。由内源性或外源性刺激引起的不稳定Zn2+浓度的波动可以短暂地影响细胞微环境,导致信号通路的调节。在这篇综述中,我们集中在锌瞬态影响哺乳动物系统细胞过程的最新发现。我们强调了不同类型的锌瞬态,以及细胞锌状态如何在早期发育、基因表达、激酶或神经元信号传导中发挥调节作用。虽然在所有情况下锌瞬态激活信号级联的分子机制并不清楚,但绘制这些相互作用的图表是这一过程的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信