Guangrui Lu, Jianhua Gong, Yue Chen, Xiaosong Li, Junyi Wang, Jun Hu
{"title":"m6A Modification-Mediated LINC01547 Promotes Pancreatic Cancer Growth and Gemcitabine Resistance Through miR-34a-5p/MYH9 Axis.","authors":"Guangrui Lu, Jianhua Gong, Yue Chen, Xiaosong Li, Junyi Wang, Jun Hu","doi":"10.1007/s10528-025-11254-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gemcitabine (GEM) resistance undermines chemotherapy efficacy for pancreatic ductal adenocarcinoma (PDAC), resulting in poor prognosis. Long non-coding RNAs (LncRNAs) participate in various malignant tumors, including PDAC. However, their roles in GEM resistance require further elucidation. Here, we investigated the function of LINC01547 in PDAC progression and chemoresistance. LINC01547 was significantly upregulated in PDAC tissues and cell lines, and its high expression correlated with unfavorable patient outcomes. Silencing LINC01547 dramatically suppressed cellular proliferation, sphere formation capability and enhanced GEM sensitivity of PDAC cells both in vitro and in vivo experiments. Mechanistically, LINC01547 as a competing endogenous RNA that could regulate miR-34a-5p. RNA-sequencing and luciferase reporter analysis demonstrated that miR-34a-5p directly targets MYH9. Additionally, METTL3 mediated m6A modification boosted the RNA stabilization and upregulation of LINC01547. Taken together, these findings indicate that LINC01547 could promote tumor progression and gemcitabine resistance in PDAC via miR-34a-5p/MYH9 axis, highlighting LINC01547 as a potential biomarker and therapeutic target for overcoming chemoresistance in PDAC.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11254-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gemcitabine (GEM) resistance undermines chemotherapy efficacy for pancreatic ductal adenocarcinoma (PDAC), resulting in poor prognosis. Long non-coding RNAs (LncRNAs) participate in various malignant tumors, including PDAC. However, their roles in GEM resistance require further elucidation. Here, we investigated the function of LINC01547 in PDAC progression and chemoresistance. LINC01547 was significantly upregulated in PDAC tissues and cell lines, and its high expression correlated with unfavorable patient outcomes. Silencing LINC01547 dramatically suppressed cellular proliferation, sphere formation capability and enhanced GEM sensitivity of PDAC cells both in vitro and in vivo experiments. Mechanistically, LINC01547 as a competing endogenous RNA that could regulate miR-34a-5p. RNA-sequencing and luciferase reporter analysis demonstrated that miR-34a-5p directly targets MYH9. Additionally, METTL3 mediated m6A modification boosted the RNA stabilization and upregulation of LINC01547. Taken together, these findings indicate that LINC01547 could promote tumor progression and gemcitabine resistance in PDAC via miR-34a-5p/MYH9 axis, highlighting LINC01547 as a potential biomarker and therapeutic target for overcoming chemoresistance in PDAC.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.