{"title":"Lighting up the gold/silver nanoclusters via confinement effect for the quantification and discrimination of sulfur-containing compounds.","authors":"Jin Mu, Xiqian Li, Yunjing Zang, Qiong Jia","doi":"10.1016/j.talanta.2025.128935","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfur-containing compounds (SCCs) play critical roles in physiological and pathological processes, but their abnormal levels are linked to diseases such as cancer and neurodegenerative diseases. Consequently, the development of accurate quantification and discrimination methods for SCCs is of great significance, providing a powerful tool for the early diagnosis of diseases. In the present study, we designed a confinement-enhanced fluorescence strategy utilizing zirconium-layered double hydroxide microspheres (ZrLDHMs) to encapsulate bimetallic AuAg nanoclusters (AuAgNCs), achieving remarkable enhancement in fluorescence properties including emission intensity, quantum yield, and fluorescence lifetime. Capitalizing on the redox activity of 2,6-dichlorophenol indophenol (DCIP) and the reducing ability of SCCs, a novel dual-mode (fluorescence/colorimetry) sensing platform was constructed based on ZrLDHMs@AuAgNCs for rapid SCCs detection. The fabricated sensor exhibited high sensitivity toward five SCCs (GSH, Cys, MPA, Na<sub>2</sub>S, and Na<sub>2</sub>SO<sub>3</sub>). Taking GSH as a representative, the sensor demonstrated limit of detection of 0.64 μM (fluorescence) and 0.09 μM (colorimetry) with a linear range of 2-70 μM at pH 7.0. Furthermore, by leveraging the differences in the reduction capabilities of DCIP among various types of SCCs, different responses are generated on the sensor array, thereby forming \"fingerprint\" features. Based on the extracted fingerprint features, the sensor array enabled rapid discrimination of multiple SCCs with high specificity. It was successfully applied to discriminate different types of SCCs in real serum and urine samples. Notably, this work not only demonstrates ZrLDHMs as effective confinement matrices for metal nanoclusters fluorescence enhancement, but also establishes a versatile sensing platform for the quantification and discrimination of SCCs, offering a versatile tool for clinical diagnostics.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"298 Pt A","pages":"128935"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128935","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur-containing compounds (SCCs) play critical roles in physiological and pathological processes, but their abnormal levels are linked to diseases such as cancer and neurodegenerative diseases. Consequently, the development of accurate quantification and discrimination methods for SCCs is of great significance, providing a powerful tool for the early diagnosis of diseases. In the present study, we designed a confinement-enhanced fluorescence strategy utilizing zirconium-layered double hydroxide microspheres (ZrLDHMs) to encapsulate bimetallic AuAg nanoclusters (AuAgNCs), achieving remarkable enhancement in fluorescence properties including emission intensity, quantum yield, and fluorescence lifetime. Capitalizing on the redox activity of 2,6-dichlorophenol indophenol (DCIP) and the reducing ability of SCCs, a novel dual-mode (fluorescence/colorimetry) sensing platform was constructed based on ZrLDHMs@AuAgNCs for rapid SCCs detection. The fabricated sensor exhibited high sensitivity toward five SCCs (GSH, Cys, MPA, Na2S, and Na2SO3). Taking GSH as a representative, the sensor demonstrated limit of detection of 0.64 μM (fluorescence) and 0.09 μM (colorimetry) with a linear range of 2-70 μM at pH 7.0. Furthermore, by leveraging the differences in the reduction capabilities of DCIP among various types of SCCs, different responses are generated on the sensor array, thereby forming "fingerprint" features. Based on the extracted fingerprint features, the sensor array enabled rapid discrimination of multiple SCCs with high specificity. It was successfully applied to discriminate different types of SCCs in real serum and urine samples. Notably, this work not only demonstrates ZrLDHMs as effective confinement matrices for metal nanoclusters fluorescence enhancement, but also establishes a versatile sensing platform for the quantification and discrimination of SCCs, offering a versatile tool for clinical diagnostics.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.