Densely-neighbored-Ru nanoparticles confined in porous-SiO2 shell for efficient CO2 methanation via plasmon-coupling-enhanced photo-thermal catalysis.

IF 21.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chan Guo, Xin Zhang, Lige Wang, Yunxiang Tang, Hao Wang, Tingting Zhao, Shikang Xiao, Zhengyi Yang, Baowen Zhou, Yanyan Jiang, Fenglong Wang
{"title":"Densely-neighbored-Ru nanoparticles confined in porous-SiO<sub>2</sub> shell for efficient CO<sub>2</sub> methanation via plasmon-coupling-enhanced photo-thermal catalysis.","authors":"Chan Guo, Xin Zhang, Lige Wang, Yunxiang Tang, Hao Wang, Tingting Zhao, Shikang Xiao, Zhengyi Yang, Baowen Zhou, Yanyan Jiang, Fenglong Wang","doi":"10.1016/j.scib.2025.09.038","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmonic metal nanostructures hold immense promise for catalysis, yet their potential remains limited by inefficient utilization of plasmon-derived energy. Herein, guided by theoretical predictions on the merits of plasmon-coupling metal nanoparticles within dielectric matrices, Ru<sub>m</sub>@pSiO<sub>2</sub> nanoreactors, where clustered Ru nanoparticles confined in a porous SiO<sub>2</sub> shell, are rationally designed. This architecture features enhanced plasmon-energy harvesting, intensified electromagnetic field confinement, and optimized photothermal management. Consequently, the as-designed Ru<sub>m</sub>@pSiO<sub>2</sub>-2 nanoreactor achieved a remarkable CH<sub>4</sub> production rate of 8.75 mol g<sub>Ru</sub><sup>-1</sup> h<sup>-1</sup> with near-100 % selectivity at 250 °C under irradiation in photo-thermal CO<sub>2</sub> methanation, surpassing surface-supported Ru<sub>m</sub>/pSiO<sub>2</sub> and isolated Ru<sub>1</sub>@pSiO<sub>2</sub> catalysts by 3.2- and 2.6-fold, respectively. Notably, it delivered a CH<sub>4</sub> yield of 2.26 L g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup> under natural sunlight, even on a winter day (outdoor temperature: -4-6 °C). This study provides a comprehensive understanding on plasmonic energy utilization for photo-thermal catalysis and establishes a groundbreaking design paradigm for next-generation photothermal catalysts.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":21.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.09.038","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic metal nanostructures hold immense promise for catalysis, yet their potential remains limited by inefficient utilization of plasmon-derived energy. Herein, guided by theoretical predictions on the merits of plasmon-coupling metal nanoparticles within dielectric matrices, Rum@pSiO2 nanoreactors, where clustered Ru nanoparticles confined in a porous SiO2 shell, are rationally designed. This architecture features enhanced plasmon-energy harvesting, intensified electromagnetic field confinement, and optimized photothermal management. Consequently, the as-designed Rum@pSiO2-2 nanoreactor achieved a remarkable CH4 production rate of 8.75 mol gRu-1 h-1 with near-100 % selectivity at 250 °C under irradiation in photo-thermal CO2 methanation, surpassing surface-supported Rum/pSiO2 and isolated Ru1@pSiO2 catalysts by 3.2- and 2.6-fold, respectively. Notably, it delivered a CH4 yield of 2.26 L gcat-1 h-1 under natural sunlight, even on a winter day (outdoor temperature: -4-6 °C). This study provides a comprehensive understanding on plasmonic energy utilization for photo-thermal catalysis and establishes a groundbreaking design paradigm for next-generation photothermal catalysts.

通过等离子体耦合增强的光热催化,将致密邻近的ru纳米颗粒限制在多孔sio2壳中,用于高效的CO2甲烷化。
等离子体金属纳米结构在催化方面具有巨大的前景,但其潜力仍然受到等离子体衍生能量利用效率低下的限制。本文在对介电基质中等离子体耦合金属纳米粒子优点的理论预测的指导下,合理设计了Rum@pSiO2纳米反应器,其中聚集的Ru纳米粒子被限制在多孔SiO2壳中。该结构具有增强的等离子体能量收集,增强的电磁场约束和优化的光热管理。因此,设计的Rum@pSiO2-2纳米反应器在250°C的光照下,光热CO2甲烷化的CH4产率为8.75 mol gRu-1 h-1,选择性接近100%,比表面负载的Rum/pSiO2和分离的Ru1@pSiO2催化剂分别高出3.2倍和2.6倍。值得注意的是,在自然光照下,即使在冬季(室外温度:-4-6°C), CH4产率也达到2.26 L gcat-1 h-1。该研究为光热催化中等离子体能量的利用提供了全面的认识,并为下一代光热催化剂的设计建立了开创性的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信