{"title":"Novel carbazole-triazole-thioether conjugates as multifunctional antimicrobial agents against phytopathogen.","authors":"Awei Zhang, Huiyan Quan, Danqing Wang, Guangqin Yang, Haizhen Zhang, Ling Tao, Lan Yang, Xiangchun Shen","doi":"10.1007/s11030-025-11377-2","DOIUrl":null,"url":null,"abstract":"<p><p>Carbazole and triazole derivatives exhibit diverse biological activities and pharmacological properties. Herein, we report a series of novel 1,2,4-triazole thioethers containing carbazole moiety and evaluate their biological activities. The results showed that some of the title compounds exhibited excellent antibacterial activities in vitro against Xanthomonas axonopodis pv. citri (Xac) in vitro. In particular, compound E36 exhibits the most excellent antibacterial effect against Xac, with an EC<sub>50</sub> value of 9.4 mg/L. This efficacy was significantly superior to those of the control drugs bismerthiazol (BMT, EC<sub>50</sub> values of 70.5 mg/L) and thiodiazole-copper (TDC, EC<sub>50</sub> values of 96.0 mg/L). Meanwhile, E36 also demonstrated a significant in vivo effect against Xac, with the therapeutic and protective efficacy of 48.57% and 51.96%, respectively, at a concentration of 200 mg/L, which was superior to TDC and equivalent to BMT. Additionally, E36 exhibited notable antifungal activity against Verticillium dahliae. Further mechanistic studies revealed that compound E36 attenuates the pathogenicity of Xac by suppressing bacterial motility and reducing extracellular polysaccharide (EPS) production. Concurrently, it enhances host disease resistance by upregulating the expression of the citrus rbcL protein, thereby promoting carbon fixation and improving photosynthetic efficiency. This work indicates that 1,2,4-triazole thioethers containing carbazole moiety has the potential to be developed as novel bactericidal agents.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11377-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Carbazole and triazole derivatives exhibit diverse biological activities and pharmacological properties. Herein, we report a series of novel 1,2,4-triazole thioethers containing carbazole moiety and evaluate their biological activities. The results showed that some of the title compounds exhibited excellent antibacterial activities in vitro against Xanthomonas axonopodis pv. citri (Xac) in vitro. In particular, compound E36 exhibits the most excellent antibacterial effect against Xac, with an EC50 value of 9.4 mg/L. This efficacy was significantly superior to those of the control drugs bismerthiazol (BMT, EC50 values of 70.5 mg/L) and thiodiazole-copper (TDC, EC50 values of 96.0 mg/L). Meanwhile, E36 also demonstrated a significant in vivo effect against Xac, with the therapeutic and protective efficacy of 48.57% and 51.96%, respectively, at a concentration of 200 mg/L, which was superior to TDC and equivalent to BMT. Additionally, E36 exhibited notable antifungal activity against Verticillium dahliae. Further mechanistic studies revealed that compound E36 attenuates the pathogenicity of Xac by suppressing bacterial motility and reducing extracellular polysaccharide (EPS) production. Concurrently, it enhances host disease resistance by upregulating the expression of the citrus rbcL protein, thereby promoting carbon fixation and improving photosynthetic efficiency. This work indicates that 1,2,4-triazole thioethers containing carbazole moiety has the potential to be developed as novel bactericidal agents.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;