Electric Field-Driven Bacterial Membrane Disintegration with Real-Time Electrical Response in SWCNT Bioelectronic Platforms.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sovanlal Mondal, Asima Pradhan, Suman Mandal, Shiv Prakash Verma, Subhamay Pramanik, Ajoy Mandal, Madhuchanda Banerjee, Dipak K Goswami
{"title":"Electric Field-Driven Bacterial Membrane Disintegration with Real-Time Electrical Response in SWCNT Bioelectronic Platforms.","authors":"Sovanlal Mondal, Asima Pradhan, Suman Mandal, Shiv Prakash Verma, Subhamay Pramanik, Ajoy Mandal, Madhuchanda Banerjee, Dipak K Goswami","doi":"10.1021/acsabm.5c00912","DOIUrl":null,"url":null,"abstract":"<p><p>We report a bioelectronic platform that integrates hydrophilically functionalized single-walled carbon nanotubes (SWCNTs) with <i>Escherichia coli</i> and gold (Au) electrodes to investigate real-time charge transport at microbial-electrode interfaces. Acid-functionalized SWCNTs enhance aqueous dispersibility and facilitate electron transfer in a deionized water environment under applied bias. Upon bacterial introduction, the device exhibits a sharp transient current spike followed by a stabilization phase, indicative of dynamic bacterial attachment and interfacial electron exchange. Kelvin probe force microscopy (KPFM) mapping reveals changes in contact potential difference (CPD) among the SWCNTs, bacteria, and Au electrodes, confirming localized charge redistribution. Additionally, the formation of depletion regions near electrode edges─driven by bacterial repulsion and ionic interactions, generates capacitive effects that modulate device conductivity. Systematic variation of bacterial concentration demonstrates a direct influence on device response, providing mechanistic insight into microbial charge transfer behavior. These findings establish a foundational understanding of nanobioelectronic interactions and highlight the potential of SWCNT-based platforms in real-time microbial sensing, environmental biosurveillance, and next-generation bioelectronic applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We report a bioelectronic platform that integrates hydrophilically functionalized single-walled carbon nanotubes (SWCNTs) with Escherichia coli and gold (Au) electrodes to investigate real-time charge transport at microbial-electrode interfaces. Acid-functionalized SWCNTs enhance aqueous dispersibility and facilitate electron transfer in a deionized water environment under applied bias. Upon bacterial introduction, the device exhibits a sharp transient current spike followed by a stabilization phase, indicative of dynamic bacterial attachment and interfacial electron exchange. Kelvin probe force microscopy (KPFM) mapping reveals changes in contact potential difference (CPD) among the SWCNTs, bacteria, and Au electrodes, confirming localized charge redistribution. Additionally, the formation of depletion regions near electrode edges─driven by bacterial repulsion and ionic interactions, generates capacitive effects that modulate device conductivity. Systematic variation of bacterial concentration demonstrates a direct influence on device response, providing mechanistic insight into microbial charge transfer behavior. These findings establish a foundational understanding of nanobioelectronic interactions and highlight the potential of SWCNT-based platforms in real-time microbial sensing, environmental biosurveillance, and next-generation bioelectronic applications.

电场驱动细菌膜分解与实时电响应在swcnts生物电子平台。
我们报道了一个生物电子平台,该平台将亲水性功能化的单壁碳纳米管(SWCNTs)与大肠杆菌和金(Au)电极集成在一起,以研究微生物-电极界面的实时电荷传输。在施加偏压的情况下,酸功能化的SWCNTs增强了水的分散性,促进了去离子水环境中的电子转移。在细菌引入后,该器件表现出急剧的瞬态电流尖峰,随后是稳定阶段,表明动态细菌附着和界面电子交换。开尔文探针力显微镜(KPFM)图谱揭示了SWCNTs、细菌和Au电极之间接触电位差(CPD)的变化,证实了局部电荷再分布。此外,在细菌排斥和离子相互作用的驱动下,电极边缘附近形成的耗尽区会产生电容效应,从而调节器件的电导率。细菌浓度的系统变化证明了对器件响应的直接影响,为微生物电荷转移行为提供了机制见解。这些发现建立了对纳米生物电子相互作用的基本理解,并强调了基于swcnts的平台在实时微生物传感、环境生物监测和下一代生物电子应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信