Glycosaminoglycans as Polyelectrolytes: Charge, Interactions, and Applications.

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-10-06 DOI:10.1002/cbic.202500418
Gergo Peter Szekeres, Eunjin Moon, Johanna K Elter, Bryce Roper, Jayachandran Narayanan Nair Kizhakkedathu, Matthias Ballauff, Rainer Haag, Kevin Pagel
{"title":"Glycosaminoglycans as Polyelectrolytes: Charge, Interactions, and Applications.","authors":"Gergo Peter Szekeres, Eunjin Moon, Johanna K Elter, Bryce Roper, Jayachandran Narayanan Nair Kizhakkedathu, Matthias Ballauff, Rainer Haag, Kevin Pagel","doi":"10.1002/cbic.202500418","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are linear, negatively charged biopolymers that modulate complex biological processes, such as blood coagulation, immune regulation, or viral entry. Their sulfation pattern and chain length govern how strongly they bind to other physiologically relevant species. Most of these interactions rely on electrostatic forces facilitated by the strong polyanionic properties of GAGs; therefore, considering these from a polyelectrolyte vantage point can help understand how such charge-based, often transient interactions contribute to physiological and pathological processes. While the different GAG classes share key electrostatic properties, they exhibit unique structural features that shape their function. Here, it is highlighted on how modern separation and analytical tools exploit the polyanionic character of GAGs to dissect subtle structural details. For these, the fundamental description of their charge-charge interactions is crucial. With this knowledge, modified GAGs, synthetic GAG mimetics, or GAG-binding molecules can be designed that replicate or refine their key properties and show promise for therapeutic and biomedical applications. Altogether, recognizing the importance of GAGs as polyelectrolytes provides vital knowledge on how their charge distribution mediates crucial biomolecular interactions in health and disease, and thus it helps complete our knowledge on fundamentally important biopolymers.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500418"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500418","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycosaminoglycans (GAGs) are linear, negatively charged biopolymers that modulate complex biological processes, such as blood coagulation, immune regulation, or viral entry. Their sulfation pattern and chain length govern how strongly they bind to other physiologically relevant species. Most of these interactions rely on electrostatic forces facilitated by the strong polyanionic properties of GAGs; therefore, considering these from a polyelectrolyte vantage point can help understand how such charge-based, often transient interactions contribute to physiological and pathological processes. While the different GAG classes share key electrostatic properties, they exhibit unique structural features that shape their function. Here, it is highlighted on how modern separation and analytical tools exploit the polyanionic character of GAGs to dissect subtle structural details. For these, the fundamental description of their charge-charge interactions is crucial. With this knowledge, modified GAGs, synthetic GAG mimetics, or GAG-binding molecules can be designed that replicate or refine their key properties and show promise for therapeutic and biomedical applications. Altogether, recognizing the importance of GAGs as polyelectrolytes provides vital knowledge on how their charge distribution mediates crucial biomolecular interactions in health and disease, and thus it helps complete our knowledge on fundamentally important biopolymers.

作为聚电解质的糖胺聚糖:电荷、相互作用和应用。
糖胺聚糖(GAGs)是一种带负电荷的线性生物聚合物,可调节复杂的生物过程,如血液凝固、免疫调节或病毒进入。它们的硫酸化模式和链长决定了它们与其他生理上相关的物种结合的强度。这些相互作用大多依赖于静电作用力,这是由gag的强聚阴离子性质促成的;因此,从多电解质的有利位置考虑这些可以帮助理解这种基于电荷的,通常是短暂的相互作用如何促进生理和病理过程。虽然不同的GAG类具有关键的静电特性,但它们表现出独特的结构特征,从而塑造了它们的功能。在这里,它强调了现代分离和分析工具如何利用聚阴离子特性的gag解剖微妙的结构细节。对它们来说,电荷-电荷相互作用的基本描述是至关重要的。有了这些知识,可以设计修饰的GAG,合成的GAG模拟物或GAG结合分子,复制或改进其关键特性,并显示出治疗和生物医学应用的希望。总之,认识到gag作为聚电解质的重要性提供了关于它们的电荷分布如何介导健康和疾病中的关键生物分子相互作用的重要知识,从而有助于完善我们对重要生物聚合物的基本知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信