Near-Full-Spectrum Emission Control in Copper(I) Iodides via Inorganic Structural Engineering Within a Single-Cation Host

Yongjing Deng, Yongkang Zhu, Xiaodong Zhao, Ning Ding, Yong Yang, Mengzhu Wang, Jiangang Li, Prof. Pengfei She, Prof. Shujuan Liu, Prof. Yun Ma, Prof. Qiang Zhao
{"title":"Near-Full-Spectrum Emission Control in Copper(I) Iodides via Inorganic Structural Engineering Within a Single-Cation Host","authors":"Yongjing Deng,&nbsp;Yongkang Zhu,&nbsp;Xiaodong Zhao,&nbsp;Ning Ding,&nbsp;Yong Yang,&nbsp;Mengzhu Wang,&nbsp;Jiangang Li,&nbsp;Prof. Pengfei She,&nbsp;Prof. Shujuan Liu,&nbsp;Prof. Yun Ma,&nbsp;Prof. Qiang Zhao","doi":"10.1002/ange.202514416","DOIUrl":null,"url":null,"abstract":"<p>Hybrid copper(I) halides have emerged as a new class of optoelectronic materials due to their tunable structure and photophysical properties. However, systematically correlating inorganic polyhedra configurations with emission characteristics remains challenging. Herein, we address this by synthesizing a homologous series of copper(I) iodides templated solely by the [C<sub>13</sub>H<sub>24</sub>N]<sup>+</sup> cation. Precise control reaction conditions yielded distinct inorganic polyhedral configurations, monomeric [CuI<sub>3</sub>]<sup>2−</sup> (<b>1</b>), dimeric [Cu<sub>2</sub>I<sub>4</sub>]<sup>2−</sup> (<b>2</b>), trimeric [Cu<sub>3</sub>I<sub>6</sub>]<sup>3−</sup> (<b>3</b>), and tetrameric [Cu<sub>4</sub>I<sub>6</sub>]<sup>2−</sup> (<b>4</b>). We establish a direct correlation where increasing inorganic aggregation systematically reduces the bandgap and dictates the luminescence color across a near-full visible spectrum, from blue (<b>1</b>) to cyan (<b>2</b>), red (<b>3</b>), and yellow (<b>4</b>). Detailed spectroscopic and theoretical analyses reveal the self-trapped excitons emission mechanism dependent on the Cu-I configuration, in which the closed [Cu<sub>4</sub>I<sub>6</sub>]<sup>2−</sup> configuration is more resistant to excited lattice deformation, thereby resulting in a lowest Stokes shift energy. Furthermore, stimuli-responsive sequential phase transitions between these well-defined structures were demonstrated, offering insights into their structural dynamics. This work provides critical fundamental understanding of how inorganic framework engineering within a fixed organic host precisely controls both electronic structure and excited-state relaxation pathways in hybrid copper(I) halides, paving the way for rational design of materials with tailored optical properties.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202514416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid copper(I) halides have emerged as a new class of optoelectronic materials due to their tunable structure and photophysical properties. However, systematically correlating inorganic polyhedra configurations with emission characteristics remains challenging. Herein, we address this by synthesizing a homologous series of copper(I) iodides templated solely by the [C13H24N]+ cation. Precise control reaction conditions yielded distinct inorganic polyhedral configurations, monomeric [CuI3]2− (1), dimeric [Cu2I4]2− (2), trimeric [Cu3I6]3− (3), and tetrameric [Cu4I6]2− (4). We establish a direct correlation where increasing inorganic aggregation systematically reduces the bandgap and dictates the luminescence color across a near-full visible spectrum, from blue (1) to cyan (2), red (3), and yellow (4). Detailed spectroscopic and theoretical analyses reveal the self-trapped excitons emission mechanism dependent on the Cu-I configuration, in which the closed [Cu4I6]2− configuration is more resistant to excited lattice deformation, thereby resulting in a lowest Stokes shift energy. Furthermore, stimuli-responsive sequential phase transitions between these well-defined structures were demonstrated, offering insights into their structural dynamics. This work provides critical fundamental understanding of how inorganic framework engineering within a fixed organic host precisely controls both electronic structure and excited-state relaxation pathways in hybrid copper(I) halides, paving the way for rational design of materials with tailored optical properties.

Abstract Image

基于无机结构工程的单阳离子主体内碘化铜的近全光谱发射控制
杂化铜卤化物由于具有可调的结构和光物理性质而成为一类新型的光电材料。然而,系统地将无机多面体结构与发射特性相关联仍然具有挑战性。在这里,我们通过合成仅由[C13H24N]+阳离子模板的同源系列铜(I)碘化物来解决这个问题。精确控制反应条件产生不同的无机多面体构型,单体[CuI3]2−(1)、二聚体[Cu2I4]2−(2)、三聚体[Cu3I6]3−(3)和四聚体[Cu4I6]2−(4)。我们建立了一个直接的关联,其中增加无机聚集系统地减少了带隙,并决定了在近全可见光谱上的发光颜色,从蓝色(1)到青色(2),红色(3)和黄色(4)。详细的光谱和理论分析揭示了自捕获激子发射机制依赖于Cu-I的构型,其中闭合的[Cu4I6]2 -构型更能抵抗激发晶格变形,从而导致最低的Stokes位移能量。此外,这些明确定义的结构之间的刺激响应顺序相变被证明,提供了对其结构动力学的见解。这项工作提供了对固定有机主体内的无机框架工程如何精确控制杂化铜(I)卤化物中的电子结构和激化态弛豫途径的关键基础理解,为合理设计具有定制光学特性的材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信