High-Numerical-Aperture, 3D-Printed All-Dielectric Harmonic Diffraction Metalens in the Sub-THz Frequency Range

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kobi Ben Atar, Jacob Engelberg, Uriel Levy
{"title":"High-Numerical-Aperture, 3D-Printed All-Dielectric Harmonic Diffraction Metalens in the Sub-THz Frequency Range","authors":"Kobi Ben Atar,&nbsp;Jacob Engelberg,&nbsp;Uriel Levy","doi":"10.1002/adpr.202500064","DOIUrl":null,"url":null,"abstract":"<p>Terahertz (THz) optical devices have emerged as critical tools across diverse applications, owing to the distinctive properties of THz radiation. The ability of THz waves to penetrate nonconductive materials enables numerous nondestructive testing applications, while their characteristic interaction with molecular vibrations produces unique spectral fingerprints, facilitating precise material identification and quantification. Moreover, the low photon energy of THz radiation makes it particularly suitable for biological inspection without sample damage. Despite these advantages, conventional THz devices, including emitters and detectors, remain bulky, impeding their miniaturization and integration. THz metalenses offer a promising solution by enabling wavefront control in compact, planar architectures. However, their reliance on electromagnetic diffraction introduces significant dispersion, presenting substantial challenges for implementation in the inherently broadband THz regime, which often spans multiple octaves. Herein, an advanced all-dielectric metalens operating at dual-frequency harmonics in the sub-THz regime is demonstrated. The lens, fabricated using commercial 3D printing technology, enables rapid prototyping and cost-effective manufacturing. This metalens achieves a numerical aperture of 0.86 (50 mm diameter, 15 mm focal length) at both 150 and 300 GHz. This development represents a significant advancement toward implementing higher-order metasurface elements in the THz regime.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) optical devices have emerged as critical tools across diverse applications, owing to the distinctive properties of THz radiation. The ability of THz waves to penetrate nonconductive materials enables numerous nondestructive testing applications, while their characteristic interaction with molecular vibrations produces unique spectral fingerprints, facilitating precise material identification and quantification. Moreover, the low photon energy of THz radiation makes it particularly suitable for biological inspection without sample damage. Despite these advantages, conventional THz devices, including emitters and detectors, remain bulky, impeding their miniaturization and integration. THz metalenses offer a promising solution by enabling wavefront control in compact, planar architectures. However, their reliance on electromagnetic diffraction introduces significant dispersion, presenting substantial challenges for implementation in the inherently broadband THz regime, which often spans multiple octaves. Herein, an advanced all-dielectric metalens operating at dual-frequency harmonics in the sub-THz regime is demonstrated. The lens, fabricated using commercial 3D printing technology, enables rapid prototyping and cost-effective manufacturing. This metalens achieves a numerical aperture of 0.86 (50 mm diameter, 15 mm focal length) at both 150 and 300 GHz. This development represents a significant advancement toward implementing higher-order metasurface elements in the THz regime.

Abstract Image

亚太赫兹频率范围内的高数值孔径、3d打印全介电谐波衍射超透镜
由于太赫兹(THz)辐射的独特特性,太赫兹(THz)光学器件已成为各种应用的关键工具。太赫兹波穿透非导电材料的能力使许多无损检测应用成为可能,而它们与分子振动的特征相互作用产生独特的光谱指纹,促进精确的材料识别和量化。此外,太赫兹辐射的低光子能量使其特别适合于不损坏样品的生物检测。尽管有这些优点,传统的太赫兹器件,包括发射器和探测器,仍然体积庞大,阻碍了它们的小型化和集成化。太赫兹超透镜通过在紧凑的平面结构中实现波前控制,提供了一个很有前途的解决方案。然而,它们对电磁衍射的依赖会引入明显的色散,这对在固有的宽带太赫兹区域(通常跨越多个八度)中实现提出了实质性的挑战。本文演示了一种工作在亚太赫兹双频谐波下的先进全介电超构透镜。该镜头采用商业3D打印技术制造,可实现快速原型制作和成本效益制造。该超透镜在150 GHz和300 GHz下均实现了0.86 (50 mm直径,15 mm焦距)的数值孔径。这一发展代表了在太赫兹区域实现高阶元表面元素的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信