Volcano-Shaped Relationship Between Interfacial K+-H2O Ratio and CO2 Reduction Activity in Tandem Electrocatalysts

Prof. Lu-Hua Zhang, Yaohua Hong, Yabo Guo, Yishan Xu, Yida Du, Prof. Fei Li, Prof. Fengshou Yu
{"title":"Volcano-Shaped Relationship Between Interfacial K+-H2O Ratio and CO2 Reduction Activity in Tandem Electrocatalysts","authors":"Prof. Lu-Hua Zhang,&nbsp;Yaohua Hong,&nbsp;Yabo Guo,&nbsp;Yishan Xu,&nbsp;Yida Du,&nbsp;Prof. Fei Li,&nbsp;Prof. Fengshou Yu","doi":"10.1002/ange.202514557","DOIUrl":null,"url":null,"abstract":"<p>Modulating surface-active hydrogen (*H) supply represents a critical strategy to boost the electrocatalytic CO<sub>2</sub> reduction reaction (ECRR), yet the mechanistic interplay between *H dynamics and catalytic behavior remains ambiguous. Herein, we construct tandem catalysts (M<sub>4</sub>/Ni<sub>1</sub>NC, M = Fe, Co, Cu, or Mn) by coupling tetranuclear metal clusters (M<sub>4</sub>) with single-atom Ni sites on N-doped carbon (Ni<sub>1</sub>NC) to regulate *H supply. Experimental and theoretical results reveal that the *H supply is governed by both thermodynamics and kinetic factors. The M<sub>4</sub> clusters provide the thermodynamic feasibility for *H supply for CO<sub>2</sub> activation. The *H supply rate in kinetic perspective is tuned by the K<sup>+</sup>-H<sub>2</sub>O ratio of interfacial water, determined by work function of the decorated M<sub>4</sub> clusters. The increased K<sup>+</sup>-H<sub>2</sub>O ratio can promote water dissociation to maintain optimal *H coverage for intermediate hydrogenation, whereas excessive *H accumulation triggers competitive hydrogen evolution. Therefore, a volcanic relationship was observed between the K<sup>+</sup>-H<sub>2</sub>O ratio and ECRR performance. Among these samples, Cu<sub>4</sub>/Ni<sub>1</sub>NC with moderate *H supply rate in kinetic exhibits exceptional ECRR performance, achieving &gt;95% Faradaic efficiency for CO across a 0.8 V potential range (−0.2 to −1.0 V versus RHE) and industrial-relevant current densities (∼385 mA cm<sup>−2</sup> at −1.0 V) in a flow cell.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202514557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modulating surface-active hydrogen (*H) supply represents a critical strategy to boost the electrocatalytic CO2 reduction reaction (ECRR), yet the mechanistic interplay between *H dynamics and catalytic behavior remains ambiguous. Herein, we construct tandem catalysts (M4/Ni1NC, M = Fe, Co, Cu, or Mn) by coupling tetranuclear metal clusters (M4) with single-atom Ni sites on N-doped carbon (Ni1NC) to regulate *H supply. Experimental and theoretical results reveal that the *H supply is governed by both thermodynamics and kinetic factors. The M4 clusters provide the thermodynamic feasibility for *H supply for CO2 activation. The *H supply rate in kinetic perspective is tuned by the K+-H2O ratio of interfacial water, determined by work function of the decorated M4 clusters. The increased K+-H2O ratio can promote water dissociation to maintain optimal *H coverage for intermediate hydrogenation, whereas excessive *H accumulation triggers competitive hydrogen evolution. Therefore, a volcanic relationship was observed between the K+-H2O ratio and ECRR performance. Among these samples, Cu4/Ni1NC with moderate *H supply rate in kinetic exhibits exceptional ECRR performance, achieving >95% Faradaic efficiency for CO across a 0.8 V potential range (−0.2 to −1.0 V versus RHE) and industrial-relevant current densities (∼385 mA cm−2 at −1.0 V) in a flow cell.

Abstract Image

串联电催化剂界面K+-H2O比与CO2还原活性的火山型关系
调节表面活性氢(*H)供应是促进电催化CO2还原反应(ECRR)的关键策略,但*H动力学与催化行为之间的相互作用机制尚不清楚。在此,我们通过将四核金属簇(M4)与n掺杂碳(Ni1NC)上的单原子Ni位点耦合来构建串联催化剂(M4/Ni1NC, M = Fe, Co, Cu或Mn),以调节*H供应。实验和理论结果表明,*H的供给受热力学和动力学因素的双重控制。M4簇为CO2活化提供了*H供应的热力学可行性。从动力学角度来看,*H的供给速率由界面水的K+-H2O比调节,由修饰的M4团簇的功函数决定。增加的K+-H2O比可以促进水解离,以保持中间氢化的最佳*H覆盖,而过量的*H积累会引发竞争性析氢。因此,在K+-H2O比与ECRR性能之间观察到火山关系。在这些样品中,在动力学中具有中等*H供应速率的Cu4/Ni1NC表现出优异的ECRR性能,在0.8 V电位范围内(相对于RHE为- 0.2至- 1.0 V)和工业相关电流密度(在- 1.0 V时为~ 385 mA cm - 2),流动电池中CO的法拉第效率达到>;95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信