{"title":"On the number of vertices/edges whose deletion preserves the Kőnig–Egerváry property","authors":"V. E. Levit, E. Mandrescu","doi":"10.1007/s10474-025-01549-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\alpha(G)\\)</span>\n and <span>\\(\\mu(G)\\)</span>\n denote the cardinality of a maximum independent\nset and the size of a maximum matching, respectively, in the graph <span>\\(G= (V,E) \\)</span>\n. If <span>\\(\\alpha(G)+\\mu(G)= \\lvert V \\rvert \\)</span>\n, then <i>G</i> is a\nKőnig–Egerváry graph.</p><p>The number <span>\\(d (G) =\\max\\{ \\lvert A \\rvert - \\lvert N (A) \\rvert :A\\subseteq V\\}\\)</span> is the critical\ndifference of the graph <i>G</i>, where <span>\\(N (A) =\\left\\{ v:v\\in V,N (v) \\cap A\\neq\\emptyset\\right\\} \\)</span>\n. Every set <span>\\(B\\subseteq V\\)</span>\nsatisfying <span>\\(d (G) = \\lvert B \\rvert - \\lvert N (B) \\rvert \\)</span>\n is <i>critical</i>. Let <span>\\(\\varepsilon (G) = \\lvert \\mathrm{\\ker}(G) \\rvert \\)</span>\n and <span>\\(\\xi (G) = \\lvert \\mathrm{core} (G) \\rvert \\)</span>\n, where <span>\\(\\mathrm{\\ker}(G)\\)</span>\n is the intersection of all critical independent sets, and <span>\\( \\mathrm{core} (G) \\)</span>\n is the intersection of all maximum independent sets. It\nis known that <span>\\(\\mathrm{\\ker}(G)\\subseteq\\)</span>\n <span>\\( \\mathrm{core} (G) \\)</span>\nholds for every graph.</p><p>Let us define\n</p><ul>\n <li>\n <p><span>\\(\\varrho_{v} (G) = \\lvert \\{ v\\in V:G-v \\)</span> is a Kőnig–Egerváry graph <span>\\(\\} \\rvert \\)</span>;</p>\n </li>\n <li>\n <p><span>\\(\\varrho_{e} (G) = \\lvert \\{ e\\in E:G-e \\)</span> is a Kőnig–Egerváry graph <span>\\( \\} \\rvert \\)</span>.</p>\n </li>\n </ul><p>Clearly, <span>\\(\\varrho_{v} (G) = \\lvert V \\rvert \\)</span> and\n<span>\\(\\varrho_{e} (G) = \\lvert E \\rvert \\)</span> for bipartite graphs.\nUnlike the bipartiteness, the property of being a Kőnig–Egerváry graph\nis not hereditary.</p><p>In this paper, we show that\n</p><div><div><span>$$\\varrho_{v} (G) = \\lvert V \\rvert -\\xi (G) +\\varepsilon (G)\\phantom{a} \\phantom{a}\\text{and}\\phantom{a} \\phantom{a} \\varrho_{e} (G) \\geq \\lvert E \\rvert -\\xi (G) +\\varepsilon (G)$$</span></div></div><p> for every Kőnig–Egerváry graph <i>G</i>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"321 - 340"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01549-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\alpha(G)\)
and \(\mu(G)\)
denote the cardinality of a maximum independent
set and the size of a maximum matching, respectively, in the graph \(G= (V,E) \)
. If \(\alpha(G)+\mu(G)= \lvert V \rvert \)
, then G is a
Kőnig–Egerváry graph.
The number \(d (G) =\max\{ \lvert A \rvert - \lvert N (A) \rvert :A\subseteq V\}\) is the critical
difference of the graph G, where \(N (A) =\left\{ v:v\in V,N (v) \cap A\neq\emptyset\right\} \)
. Every set \(B\subseteq V\)
satisfying \(d (G) = \lvert B \rvert - \lvert N (B) \rvert \)
is critical. Let \(\varepsilon (G) = \lvert \mathrm{\ker}(G) \rvert \)
and \(\xi (G) = \lvert \mathrm{core} (G) \rvert \)
, where \(\mathrm{\ker}(G)\)
is the intersection of all critical independent sets, and \( \mathrm{core} (G) \)
is the intersection of all maximum independent sets. It
is known that \(\mathrm{\ker}(G)\subseteq\)\( \mathrm{core} (G) \)
holds for every graph.
Let us define
\(\varrho_{v} (G) = \lvert \{ v\in V:G-v \) is a Kőnig–Egerváry graph \(\} \rvert \);
\(\varrho_{e} (G) = \lvert \{ e\in E:G-e \) is a Kőnig–Egerváry graph \( \} \rvert \).
Clearly, \(\varrho_{v} (G) = \lvert V \rvert \) and
\(\varrho_{e} (G) = \lvert E \rvert \) for bipartite graphs.
Unlike the bipartiteness, the property of being a Kőnig–Egerváry graph
is not hereditary.
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.