On the number of vertices/edges whose deletion preserves the Kőnig–Egerváry property

IF 0.6 3区 数学 Q3 MATHEMATICS
V. E. Levit, E. Mandrescu
{"title":"On the number of vertices/edges whose deletion preserves the Kőnig–Egerváry property","authors":"V. E. Levit,&nbsp;E. Mandrescu","doi":"10.1007/s10474-025-01549-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\alpha(G)\\)</span>\n and <span>\\(\\mu(G)\\)</span>\n denote the cardinality of a maximum independent\nset and the size of a maximum matching, respectively, in the graph <span>\\(G= (V,E) \\)</span>\n. If <span>\\(\\alpha(G)+\\mu(G)= \\lvert V \\rvert \\)</span>\n, then <i>G</i> is a\nKőnig–Egerváry graph.</p><p>The number <span>\\(d (G) =\\max\\{ \\lvert A \\rvert - \\lvert N (A) \\rvert :A\\subseteq V\\}\\)</span> is the critical\ndifference of the graph <i>G</i>, where <span>\\(N (A) =\\left\\{ v:v\\in V,N (v) \\cap A\\neq\\emptyset\\right\\} \\)</span>\n. Every set <span>\\(B\\subseteq V\\)</span>\nsatisfying <span>\\(d (G) = \\lvert B \\rvert - \\lvert N (B) \\rvert \\)</span>\n is <i>critical</i>. Let <span>\\(\\varepsilon (G) = \\lvert \\mathrm{\\ker}(G) \\rvert \\)</span>\n and <span>\\(\\xi (G) = \\lvert \\mathrm{core} (G) \\rvert \\)</span>\n, where <span>\\(\\mathrm{\\ker}(G)\\)</span>\n is the intersection of all critical independent sets, and <span>\\( \\mathrm{core} (G) \\)</span>\n is the intersection of all maximum independent sets. It\nis known that <span>\\(\\mathrm{\\ker}(G)\\subseteq\\)</span>\n <span>\\( \\mathrm{core} (G) \\)</span>\nholds for every graph.</p><p>Let us define\n</p><ul>\n <li>\n <p><span>\\(\\varrho_{v} (G) = \\lvert \\{ v\\in V:G-v \\)</span> is a Kőnig–Egerváry graph <span>\\(\\} \\rvert \\)</span>;</p>\n </li>\n <li>\n <p><span>\\(\\varrho_{e} (G) = \\lvert \\{ e\\in E:G-e \\)</span> is a Kőnig–Egerváry graph <span>\\( \\} \\rvert \\)</span>.</p>\n </li>\n </ul><p>Clearly, <span>\\(\\varrho_{v} (G) = \\lvert V \\rvert \\)</span> and\n<span>\\(\\varrho_{e} (G) = \\lvert E \\rvert \\)</span> for bipartite graphs.\nUnlike the bipartiteness, the property of being a Kőnig–Egerváry graph\nis not hereditary.</p><p>In this paper, we show that\n</p><div><div><span>$$\\varrho_{v} (G) = \\lvert V \\rvert -\\xi (G) +\\varepsilon (G)\\phantom{a} \\phantom{a}\\text{and}\\phantom{a} \\phantom{a} \\varrho_{e} (G) \\geq \\lvert E \\rvert -\\xi (G) +\\varepsilon (G)$$</span></div></div><p> for every Kőnig–Egerváry graph <i>G</i>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"321 - 340"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01549-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\alpha(G)\) and \(\mu(G)\) denote the cardinality of a maximum independent set and the size of a maximum matching, respectively, in the graph \(G= (V,E) \) . If \(\alpha(G)+\mu(G)= \lvert V \rvert \) , then G is a Kőnig–Egerváry graph.

The number \(d (G) =\max\{ \lvert A \rvert - \lvert N (A) \rvert :A\subseteq V\}\) is the critical difference of the graph G, where \(N (A) =\left\{ v:v\in V,N (v) \cap A\neq\emptyset\right\} \) . Every set \(B\subseteq V\) satisfying \(d (G) = \lvert B \rvert - \lvert N (B) \rvert \) is critical. Let \(\varepsilon (G) = \lvert \mathrm{\ker}(G) \rvert \) and \(\xi (G) = \lvert \mathrm{core} (G) \rvert \) , where \(\mathrm{\ker}(G)\) is the intersection of all critical independent sets, and \( \mathrm{core} (G) \) is the intersection of all maximum independent sets. It is known that \(\mathrm{\ker}(G)\subseteq\) \( \mathrm{core} (G) \) holds for every graph.

Let us define

  • \(\varrho_{v} (G) = \lvert \{ v\in V:G-v \) is a Kőnig–Egerváry graph \(\} \rvert \);

  • \(\varrho_{e} (G) = \lvert \{ e\in E:G-e \) is a Kőnig–Egerváry graph \( \} \rvert \).

Clearly, \(\varrho_{v} (G) = \lvert V \rvert \) and \(\varrho_{e} (G) = \lvert E \rvert \) for bipartite graphs. Unlike the bipartiteness, the property of being a Kőnig–Egerváry graph is not hereditary.

In this paper, we show that

$$\varrho_{v} (G) = \lvert V \rvert -\xi (G) +\varepsilon (G)\phantom{a} \phantom{a}\text{and}\phantom{a} \phantom{a} \varrho_{e} (G) \geq \lvert E \rvert -\xi (G) +\varepsilon (G)$$

for every Kőnig–Egerváry graph G.

删除保留Kőnig-Egerváry属性的顶点/边的数量
设\(\alpha(G)\)和\(\mu(G)\)分别表示图\(G= (V,E) \)中最大独立集的基数和最大匹配的大小。如果\(\alpha(G)+\mu(G)= \lvert V \rvert \),则G是aKőnig-Egerváry图。数字\(d (G) =\max\{ \lvert A \rvert - \lvert N (A) \rvert :A\subseteq V\}\)是图G的临界差值,其中\(N (A) =\left\{ v:v\in V,N (v) \cap A\neq\emptyset\right\} \)。每一组\(B\subseteq V\)满意\(d (G) = \lvert B \rvert - \lvert N (B) \rvert \)是至关重要的。设\(\varepsilon (G) = \lvert \mathrm{\ker}(G) \rvert \)和\(\xi (G) = \lvert \mathrm{core} (G) \rvert \),其中\(\mathrm{\ker}(G)\)是所有临界独立集的交集,\( \mathrm{core} (G) \)是所有最大独立集的交集。众所周知,\(\mathrm{\ker}(G)\subseteq\)\( \mathrm{core} (G) \)适用于所有图表。我们定义\(\varrho_{v} (G) = \lvert \{ v\in V:G-v \)是一个Kőnig-Egerváry图\(\} \rvert \);\(\varrho_{e} (G) = \lvert \{ e\in E:G-e \)是一个Kőnig-Egerváry图形\( \} \rvert \)。显然,对于二部图,\(\varrho_{v} (G) = \lvert V \rvert \)和\(\varrho_{e} (G) = \lvert E \rvert \)。与二分性不同,Kőnig-Egerváry图形的属性不是遗传的。在本文中,我们证明了$$\varrho_{v} (G) = \lvert V \rvert -\xi (G) +\varepsilon (G)\phantom{a} \phantom{a}\text{and}\phantom{a} \phantom{a} \varrho_{e} (G) \geq \lvert E \rvert -\xi (G) +\varepsilon (G)$$对于每一个Kőnig-Egerváry图G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信