k-convex Solution to a System of k-Hessian Equations with Power-type Nonlinearities

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Cheng-hua Gao, Dui-hua Duan, Xing-yue He
{"title":"k-convex Solution to a System of k-Hessian Equations with Power-type Nonlinearities","authors":"Cheng-hua Gao,&nbsp;Dui-hua Duan,&nbsp;Xing-yue He","doi":"10.1007/s10255-025-0045-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a system of <i>k</i>-Hessian equations</p><div><div><span>$$\\left\\{{\\matrix{{{S_k}({\\lambda ({{D^2}u})}) = {{({- u})}^{{\\alpha _1}}} + {{({- v})}^{{\\beta _1}}},} \\hfill &amp; {{\\rm{in}}\\,B,} \\hfill \\cr {{S_k}({\\lambda ({{D^2}v})}) = {{({- u})}^{{\\alpha _2}}},} \\hfill &amp; {{\\rm{in}}\\,B,} \\hfill \\cr {u = v = 0,} \\hfill &amp; {{\\rm{on}}\\,\\partial B,} \\hfill}} \\right.$$</span></div></div><p>where 1 ≤ <i>k</i> ≤ <i>n</i> (<i>n</i> ≥ 2), <i>α</i><sub>1</sub>, <i>α</i><sub>2</sub> and <i>β</i><sub>1</sub> are positive constants, <i>B</i> = {<i>x</i> ∈ ℝ<sup><i>n</i></sup>: ∣<i>x</i>∣ &lt; 1}. By giving the complete classification for the constants <i>α</i><sub>1</sub>, <i>α</i><sub>2</sub> and <i>β</i><sub>1</sub> according to the value of <i>k</i>, some sharp conditions are obtained for the existence, uniqueness and nonexistence results of <i>k</i>-convex solutions to the above problem.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1180 - 1190"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0045-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of k-Hessian equations

$$\left\{{\matrix{{{S_k}({\lambda ({{D^2}u})}) = {{({- u})}^{{\alpha _1}}} + {{({- v})}^{{\beta _1}}},} \hfill & {{\rm{in}}\,B,} \hfill \cr {{S_k}({\lambda ({{D^2}v})}) = {{({- u})}^{{\alpha _2}}},} \hfill & {{\rm{in}}\,B,} \hfill \cr {u = v = 0,} \hfill & {{\rm{on}}\,\partial B,} \hfill}} \right.$$

where 1 ≤ kn (n ≥ 2), α1, α2 and β1 are positive constants, B = {x ∈ ℝn: ∣x∣ < 1}. By giving the complete classification for the constants α1, α2 and β1 according to the value of k, some sharp conditions are obtained for the existence, uniqueness and nonexistence results of k-convex solutions to the above problem.

一类幂型非线性k-Hessian方程组的k-凸解
我们考虑一个k- hessian方程组$$\left\{{\matrix{{{S_k}({\lambda ({{D^2}u})}) = {{({- u})}^{{\alpha _1}}} + {{({- v})}^{{\beta _1}}},} \hfill & {{\rm{in}}\,B,} \hfill \cr {{S_k}({\lambda ({{D^2}v})}) = {{({- u})}^{{\alpha _2}}},} \hfill & {{\rm{in}}\,B,} \hfill \cr {u = v = 0,} \hfill & {{\rm{on}}\,\partial B,} \hfill}} \right.$$,其中1≤k≤n (n≥2),α1, α2和β1是正常数,B = {x∈x n:∣x∣&lt; 1}。根据k的值给出常数α1、α2和β1的完全分类,得到了上述问题k-凸解的存在性、唯一性和不存在性的一些尖锐条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信