F. S. Abd El-kawy, S. Hammad, H. Talaat, G. Bacher, M. Ghali
{"title":"Bright white light emitting diodes based on sustainable graphene quantum dots derived from Moringa oleifera leaves as photo-converter layer","authors":"F. S. Abd El-kawy, S. Hammad, H. Talaat, G. Bacher, M. Ghali","doi":"10.1007/s42823-025-00932-4","DOIUrl":null,"url":null,"abstract":"<div><p>The avenue to synthesize eco-friendly and high-performing warm-white light emitting diodes (WLEDs) using quantum-dots for color conversion is challenging. Here, the graphene quantum dots (GQDs) are synthesized from <i>Moringa oleifera</i> leaves without the need of any organic solvents or reducing agents by a one-pot hydrothermal method and utilized for the design of efficient warm WLEDs. The photoluminescence of the obtained GQDs is found to be red-shifted as the excitation wavelength increases. This is ascribed to an excitation of multiple transitions due to various surface traps related to surface amino and oxygen functionalized groups as revealed from X-ray-photoelectron–spectroscopy and FTIR results. Three different concentrations of GQDs are embedded in polyvinyl-alcohol matrix acting as color-converters for the design of WLED devices. By increasing the GQDs concentration, the color correlated temperatures are tuned from 3804 to 2593 K and the luminous efficacy from 39.3 to 71.69 lm/W. Moreover, the chromaticity coordinates of the devices are shifted from (0.3825, 0.3665) to (0.4807, 0.4478). The brightness of the fabricated devices based on these green-GQDs are comparable with those of warm LEDs prepared from chemically synthesized graphene and carbon dots and can be suitable for indoor lighting applications. </p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 5","pages":"2395 - 2410"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42823-025-00932-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00932-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The avenue to synthesize eco-friendly and high-performing warm-white light emitting diodes (WLEDs) using quantum-dots for color conversion is challenging. Here, the graphene quantum dots (GQDs) are synthesized from Moringa oleifera leaves without the need of any organic solvents or reducing agents by a one-pot hydrothermal method and utilized for the design of efficient warm WLEDs. The photoluminescence of the obtained GQDs is found to be red-shifted as the excitation wavelength increases. This is ascribed to an excitation of multiple transitions due to various surface traps related to surface amino and oxygen functionalized groups as revealed from X-ray-photoelectron–spectroscopy and FTIR results. Three different concentrations of GQDs are embedded in polyvinyl-alcohol matrix acting as color-converters for the design of WLED devices. By increasing the GQDs concentration, the color correlated temperatures are tuned from 3804 to 2593 K and the luminous efficacy from 39.3 to 71.69 lm/W. Moreover, the chromaticity coordinates of the devices are shifted from (0.3825, 0.3665) to (0.4807, 0.4478). The brightness of the fabricated devices based on these green-GQDs are comparable with those of warm LEDs prepared from chemically synthesized graphene and carbon dots and can be suitable for indoor lighting applications.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.