Numerical Study on the Contact Characteristics of Multi-stage Superconducting Cables Under Tensile Strain

IF 1.4 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Sitongyan Li, Zhiwen Zhou, Zhiwen Gao
{"title":"Numerical Study on the Contact Characteristics of Multi-stage Superconducting Cables Under Tensile Strain","authors":"Sitongyan Li,&nbsp;Zhiwen Zhou,&nbsp;Zhiwen Gao","doi":"10.1007/s10909-025-03316-0","DOIUrl":null,"url":null,"abstract":"<div><p>Superconducting cables with complex multi-stage helical structures are essential components of the superconducting magnet systems of the International Thermonuclear Experimental Reactor. These cables often experience contact issues that can adversely affect their conductive properties. This study introduces a three-dimensional numerical model designed to accurately analyze the contact characteristics of multi-stage superconducting cables subjected to tensile strain. The model begins by defining the multi-stage geometry of the cable, and then evaluates the distribution of contact pressures and contact regions across individual strands. The numerical model was validated through comparison with existing reference data. An average contact force is introduced to quantify the magnitude of contact force on each strand. The study analyzes the effects of variations in the helical pitches of each stage of the cable on contact characteristics, as well as the influence of changes in the helical pitches of lower-stage cables on the contact characteristics of higher-stage cables. This research enhances the understanding of contact characteristics in multi-stage superconducting cables and provides valuable insights for optimizing the design of advanced hierarchical helical structures.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"221 1-6","pages":"83 - 97"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03316-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Superconducting cables with complex multi-stage helical structures are essential components of the superconducting magnet systems of the International Thermonuclear Experimental Reactor. These cables often experience contact issues that can adversely affect their conductive properties. This study introduces a three-dimensional numerical model designed to accurately analyze the contact characteristics of multi-stage superconducting cables subjected to tensile strain. The model begins by defining the multi-stage geometry of the cable, and then evaluates the distribution of contact pressures and contact regions across individual strands. The numerical model was validated through comparison with existing reference data. An average contact force is introduced to quantify the magnitude of contact force on each strand. The study analyzes the effects of variations in the helical pitches of each stage of the cable on contact characteristics, as well as the influence of changes in the helical pitches of lower-stage cables on the contact characteristics of higher-stage cables. This research enhances the understanding of contact characteristics in multi-stage superconducting cables and provides valuable insights for optimizing the design of advanced hierarchical helical structures.

拉应变作用下多级超导电缆接触特性的数值研究
具有复杂多级螺旋结构的超导电缆是国际热核实验堆超导磁体系统的重要组成部分。这些电缆经常遇到接触问题,这会对其导电性能产生不利影响。为了准确分析多级超导电缆在拉伸应变作用下的接触特性,建立了三维数值模型。该模型首先定义电缆的多级几何形状,然后评估接触压力和接触区域在各个股上的分布。通过与已有参考数据的对比,对数值模型进行了验证。引入平均接触力来量化每条链上接触力的大小。研究分析了电缆各级螺旋节距的变化对接触特性的影响,以及低级电缆螺旋节距的变化对高级电缆接触特性的影响。该研究增强了对多级超导电缆接触特性的理解,为先进分层螺旋结构的优化设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信