{"title":"Simulation of microwave heating characteristics of activated carbon","authors":"Yulei Qiao, Hang Chen, Sihan Liu, Anqi Xia, Yeshun Tian, Changliang Wu, Xiuzhi Zhang, Shuxia Feng, Xiao Xia, Liqiang Zhang, Guangbin Duan","doi":"10.1007/s42823-025-00928-0","DOIUrl":null,"url":null,"abstract":"<div><p>To explore the heating characteristics of activated carbon in a microwave field, the effects of microwave irradiation power, the radius and physical properties of activated carbon, and a symmetrical waveguide on the heating characteristics of activated carbon in a microwave field were studied by experiments and simulation. This study distinguishes itself from previous works by focusing on high-power microwave heating (up to 800 W) and providing a comprehensive analysis of key parameters such as radius, thermal conductivity, magnetic conductivity, and dielectric constant. Additionally, the use of symmetrical waveguides and their impact on heating efficiency represents a novel contribution to the field of microwave-assisted flue gas desulfurization. According to the results, with the increase in microwave irradiation power, the heating rate of activated carbon in the microwave field increases, and the final temperature also rises. Waveguides significantly influence the heating characteristics of activated carbon. When multiple waveguides act on the same microwave field, electromagnetic waves interfere with each other and affect the distribution and intensity of the electromagnetic field. With an increase in the imaginary part of the relative permittivity, the real part of the relative magnetic permeability, and the thermal conductivity of the heated material, the heating characteristics of activated carbon in the microwave field are improved. This study provides a theoretical model for the heating characteristics and temperature distribution of activated carbon in a microwave field under high irradiation power.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 5","pages":"2335 - 2348"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00928-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the heating characteristics of activated carbon in a microwave field, the effects of microwave irradiation power, the radius and physical properties of activated carbon, and a symmetrical waveguide on the heating characteristics of activated carbon in a microwave field were studied by experiments and simulation. This study distinguishes itself from previous works by focusing on high-power microwave heating (up to 800 W) and providing a comprehensive analysis of key parameters such as radius, thermal conductivity, magnetic conductivity, and dielectric constant. Additionally, the use of symmetrical waveguides and their impact on heating efficiency represents a novel contribution to the field of microwave-assisted flue gas desulfurization. According to the results, with the increase in microwave irradiation power, the heating rate of activated carbon in the microwave field increases, and the final temperature also rises. Waveguides significantly influence the heating characteristics of activated carbon. When multiple waveguides act on the same microwave field, electromagnetic waves interfere with each other and affect the distribution and intensity of the electromagnetic field. With an increase in the imaginary part of the relative permittivity, the real part of the relative magnetic permeability, and the thermal conductivity of the heated material, the heating characteristics of activated carbon in the microwave field are improved. This study provides a theoretical model for the heating characteristics and temperature distribution of activated carbon in a microwave field under high irradiation power.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.