Controlling the softening point of mesophase pitch via edge-selective fluorination

IF 5.8 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chaehun Lim, ·Seongjae Myeong, ·Sangyeop Lee, ·Seongmin Ha, Young-Seak Lee
{"title":"Controlling the softening point of mesophase pitch via edge-selective fluorination","authors":"Chaehun Lim,&nbsp;·Seongjae Myeong,&nbsp;·Sangyeop Lee,&nbsp;·Seongmin Ha,&nbsp;Young-Seak Lee","doi":"10.1007/s42823-025-00947-x","DOIUrl":null,"url":null,"abstract":"<div><p>Modifying the softening point (SP) of pitch is crucial owing to its substantial influence on pitch applicability. This study presents a novel fluorination technique for engineering the SP of mesophase pitch (MP). Low-concentration fluorine gas was used to modify the edge sites of the MP, allowing for either an increase or decrease in the SP by controlling the gas reactivity. The fluorination was conducted with 20 vol% F<sub>2</sub> gas under reaction temperature of 25, 50, and 75 ℃ for 2 h in atmospheric pressure. A reduction in SP was achieved through edge alkylation, with a decrease of up to 14.1% observed after the fluorination. Conversely, an increase in SP resulted from edge dealkylation at higher reaction temperatures. As the modified MPs retained perfect anisotropy, this study offers an effective strategy for adjusting the SP to meet application needs without causing structural deterioration.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 5","pages":"2021 - 2027"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00947-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modifying the softening point (SP) of pitch is crucial owing to its substantial influence on pitch applicability. This study presents a novel fluorination technique for engineering the SP of mesophase pitch (MP). Low-concentration fluorine gas was used to modify the edge sites of the MP, allowing for either an increase or decrease in the SP by controlling the gas reactivity. The fluorination was conducted with 20 vol% F2 gas under reaction temperature of 25, 50, and 75 ℃ for 2 h in atmospheric pressure. A reduction in SP was achieved through edge alkylation, with a decrease of up to 14.1% observed after the fluorination. Conversely, an increase in SP resulted from edge dealkylation at higher reaction temperatures. As the modified MPs retained perfect anisotropy, this study offers an effective strategy for adjusting the SP to meet application needs without causing structural deterioration.

采用边缘选择性氟化技术控制中间相沥青软化点
沥青软化点对沥青的适用性有重要影响,因此对其进行改性至关重要。本研究提出了一种用于中间相沥青(MP) SP工程的新型氟化技术。使用低浓度氟气体来修饰MP的边缘位置,通过控制气体反应性来增加或减少SP。在常压下,在25、50、75℃的反应温度下,用20 vol% F2气体氟化2 h。SP的减少是通过边缘烷基化实现的,氟化后观察到SP的减少高达14.1%。相反,在较高的反应温度下,边缘脱烷基会导致SP的增加。由于改进的MPs保留了完美的各向异性,本研究提供了有效的策略来调整SP以满足应用需求,而不会造成结构恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信