On open-separated sequences

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Bella, N. Carlson, S. Spadaro, P. Szeptycki
{"title":"On open-separated sequences","authors":"A. Bella,&nbsp;N. Carlson,&nbsp;S. Spadaro,&nbsp;P. Szeptycki","doi":"10.1007/s10474-025-01553-z","DOIUrl":null,"url":null,"abstract":"<div><p>\nWe introduce the notion of an open-separated sequence, related to a free sequence, and define the cardinal function\n<span>\\(\\text{os} ( X)\\)</span>. Nonregular and regular examples <span>\\(X\\)</span> are given such that <span>\\(\\text{os} ( X)&lt;F(X)\\)</span>. Motivated by a question of Angelo Bella, we show that if\n<span>\\(X\\)</span> is Hausdorff then <span>\\(|X|\\leq hL(X)^{\\text{os} ( X)\\psi_c(X)}\\)</span>. As\n<span>\\(\\text{os} ( X)\\psi_c(X)\\leq hL(X)\\)</span> if <span>\\(X\\)</span> is Hausdorff, this gives a\nstrengthening of the De Groot-Smirnov bound <span>\\(2^{hL(X)}\\)</span> for the\ncardinality of a Hausdorff space. Additionally we show <span>\\( \\text{nw}( X)\\leq \\text{hL}(X)^{\\text {os} ( X)}\\)</span> if <span>\\(X\\)</span> is regular. A consequence is that if <span>\\(X\\)</span> is regular and either almost radial or hereditarily weakly Whyburn then <span>\\( { |X|\\leq hL(X)^{\\text{os} ( X)} } \\)</span>.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"387 - 399"},"PeriodicalIF":0.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-025-01553-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01553-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of an open-separated sequence, related to a free sequence, and define the cardinal function \(\text{os} ( X)\). Nonregular and regular examples \(X\) are given such that \(\text{os} ( X)<F(X)\). Motivated by a question of Angelo Bella, we show that if \(X\) is Hausdorff then \(|X|\leq hL(X)^{\text{os} ( X)\psi_c(X)}\). As \(\text{os} ( X)\psi_c(X)\leq hL(X)\) if \(X\) is Hausdorff, this gives a strengthening of the De Groot-Smirnov bound \(2^{hL(X)}\) for the cardinality of a Hausdorff space. Additionally we show \( \text{nw}( X)\leq \text{hL}(X)^{\text {os} ( X)}\) if \(X\) is regular. A consequence is that if \(X\) is regular and either almost radial or hereditarily weakly Whyburn then \( { |X|\leq hL(X)^{\text{os} ( X)} } \).

关于开分隔序列
我们引入了与自由序列相关的开分离序列的概念,并定义了基数函数\(\text{os} ( X)\)。给出了不规则和规则的例子\(X\),使得\(\text{os} ( X)<F(X)\)。受Angelo Bella问题的启发,我们表明,如果\(X\)是Hausdorff,那么\(|X|\leq hL(X)^{\text{os} ( X)\psi_c(X)}\)。因为\(\text{os} ( X)\psi_c(X)\leq hL(X)\)如果\(X\)是Hausdorff,这就增强了De Groot-Smirnov界\(2^{hL(X)}\)对于Hausdorff空间的底数。此外,如果\(X\)是常规的,我们会显示\( \text{nw}( X)\leq \text{hL}(X)^{\text {os} ( X)}\)。一个结果是,如果\(X\)是规则的,要么几乎是放射状的,要么遗传上是弱的,那么\( { |X|\leq hL(X)^{\text{os} ( X)} } \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信