Measure theoretic equicontinuity and sensitivity via Furstenberg family

IF 0.6 3区 数学 Q3 MATHEMATICS
H. Ju, Y. Ju, J. Kim
{"title":"Measure theoretic equicontinuity and sensitivity via Furstenberg family","authors":"H. Ju,&nbsp;Y. Ju,&nbsp;J. Kim","doi":"10.1007/s10474-025-01558-8","DOIUrl":null,"url":null,"abstract":"<div><p>We consider measure theoretic equicontinuity and sensitivity via Furstenberg family. We introduce the notion of <span>\\(\\mathcal {F}\\)</span>-<span>\\(\\mu\\)</span>-equicontinuity which is the refined version of <span>\\(\\mu \\)</span>-equicontinuity using Furstenberg family <span>\\(\\mathcal {F}\\)</span> and prove that when <span>\\(\\mathcal {F}\\)</span> is a filter, a given dynamical system <span>\\((X,T)\\)</span> is <span>\\(\\mathcal {F}\\)</span>-<span>\\(\\mu\\)</span>-equicontinuous if and only if it is <span>\\(\\mathcal {F}\\)</span>-<span>\\(\\mu\\)</span>-<span>\\(f\\)</span>-equicontinuous with respect to every continuous function <span>\\(f \\colon {X \\to \\mathbb {C}} \\)</span>. In addition, under certain conditinos, we prove that an ergodic measure theoretic dynamical system is either <span>\\(k\\mathcal {F}\\)</span>-<span>\\(\\mu \\)</span>-sensitive or <span>\\(\\mathcal {F}\\)</span>-<span>\\(\\mu\\)</span>-equicontinuous.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"291 - 312"},"PeriodicalIF":0.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01558-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider measure theoretic equicontinuity and sensitivity via Furstenberg family. We introduce the notion of \(\mathcal {F}\)-\(\mu\)-equicontinuity which is the refined version of \(\mu \)-equicontinuity using Furstenberg family \(\mathcal {F}\) and prove that when \(\mathcal {F}\) is a filter, a given dynamical system \((X,T)\) is \(\mathcal {F}\)-\(\mu\)-equicontinuous if and only if it is \(\mathcal {F}\)-\(\mu\)-\(f\)-equicontinuous with respect to every continuous function \(f \colon {X \to \mathbb {C}} \). In addition, under certain conditinos, we prove that an ergodic measure theoretic dynamical system is either \(k\mathcal {F}\)-\(\mu \)-sensitive or \(\mathcal {F}\)-\(\mu\)-equicontinuous.

通过Furstenberg族测量理论的等连续性和灵敏度
我们通过Furstenberg族来考虑测量理论的等连续性和灵敏度。我们引入\(\mathcal {F}\) - \(\mu\) -equicontinuity的概念,它是\(\mu \) -equicontinuity的改进版本,使用Furstenberg家族\(\mathcal {F}\),并证明当\(\mathcal {F}\)是一个滤波器时,给定的动力系统\((X,T)\)是\(\mathcal {F}\) - \(\mu\) - equicontinity当且仅当它对每一个连续函数\(f \colon {X \to \mathbb {C}} \)是\(\mathcal {F}\) - \(\mu\) - \(f\) - equicontintinity。此外,在一定条件下,我们证明了遍历测度理论动力系统是\(k\mathcal {F}\) - \(\mu \)敏感或\(\mathcal {F}\) - \(\mu\) -等连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信