The Compressibility at Unitarity: A Superfluid Signature in Trapped Ultracold Fermi Gases

IF 1.4 3区 物理与天体物理 Q4 PHYSICS, APPLIED
D. K. Watson
{"title":"The Compressibility at Unitarity: A Superfluid Signature in Trapped Ultracold Fermi Gases","authors":"D. K. Watson","doi":"10.1007/s10909-025-03318-y","DOIUrl":null,"url":null,"abstract":"<div><p>The behavior of the thermodynamic compressibility of a trapped ultracold Fermi gas at unitarity is explored as the temperature approaches the critical temperature and the gas undergoes a phase transition to a superfluid state. This phase transition offers an opportunity to probe the microscopic underpinnings of this transition and can serve as a test of theoretical approaches. In this study, the collective behavior of the gas as it undergoes this phase transition is described using normal modes. The Pauli principle is applied “on paper” using specific normal mode assignments that are consistent with this fundamental principle. This study finds a small signature of the transition at the critical temperature in contrast to previous experimental and theoretical results.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"221 1-6","pages":"108 - 128"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03318-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The behavior of the thermodynamic compressibility of a trapped ultracold Fermi gas at unitarity is explored as the temperature approaches the critical temperature and the gas undergoes a phase transition to a superfluid state. This phase transition offers an opportunity to probe the microscopic underpinnings of this transition and can serve as a test of theoretical approaches. In this study, the collective behavior of the gas as it undergoes this phase transition is described using normal modes. The Pauli principle is applied “on paper” using specific normal mode assignments that are consistent with this fundamental principle. This study finds a small signature of the transition at the critical temperature in contrast to previous experimental and theoretical results.

统一性处的可压缩性:捕获超冷费米气体中的超流体特征
研究了捕获的超冷费米气体在温度接近临界温度时的热力学可压缩性行为,以及气体向超流体相变的过程。这种相变提供了一个机会来探索这种转变的微观基础,并可以作为理论方法的测试。在这项研究中,气体的集体行为,因为它经历了这种相变是用正常模式描述的。泡利原理是“在纸上”应用的,使用与这一基本原理相一致的特定正态赋值。与以往的实验和理论结果相比,本研究发现了临界温度下转变的小特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信