{"title":"Tunable Photon Blockade Within the Coupled Tripartite Hybrid System","authors":"Shurui Yan, Junbin Liu, Yueming Wang, Tingxian Zhang","doi":"10.1007/s10909-025-03321-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we studied the photon blockade (PB) effect within a fully coupled tripartite hybrid system, where a two-level atom is integrated into a cavity optomechanical system. By applying the Schrieffer–Wolff transformation, the tripartite problem is effectively converted into a bipartite problem. The resulting effective Hamiltonian features multi-adjustable parameters: the detunings among the atomic transition frequency, the cavity resonance frequency, the driving field frequency, and the driving amplitude. By means of the probability amplitude method and the quantum master equation method, we investigated the PB effects of the system under varying detunings and driving amplitude. Furthermore, the results show that the PB effect can be achieved within a broader detuning range when the driving amplitude increases. It is noteworthy that the two-level atom plays a non-negligible role in the PB effect because it induces a cavity frequency shift, thereby providing an additional adjustable parameter for the system to optimize the PB effect. Our findings hold instructive and practical value for the design and optimization of relevant experiments in the field of quantum optics.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"221 1-6","pages":"160 - 171"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03321-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we studied the photon blockade (PB) effect within a fully coupled tripartite hybrid system, where a two-level atom is integrated into a cavity optomechanical system. By applying the Schrieffer–Wolff transformation, the tripartite problem is effectively converted into a bipartite problem. The resulting effective Hamiltonian features multi-adjustable parameters: the detunings among the atomic transition frequency, the cavity resonance frequency, the driving field frequency, and the driving amplitude. By means of the probability amplitude method and the quantum master equation method, we investigated the PB effects of the system under varying detunings and driving amplitude. Furthermore, the results show that the PB effect can be achieved within a broader detuning range when the driving amplitude increases. It is noteworthy that the two-level atom plays a non-negligible role in the PB effect because it induces a cavity frequency shift, thereby providing an additional adjustable parameter for the system to optimize the PB effect. Our findings hold instructive and practical value for the design and optimization of relevant experiments in the field of quantum optics.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.